文章目录
力扣算法学习day18-2
108-将有序数组转换为二叉搜索树
题目
代码实现
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode sortedArrayToBST(int[] nums) {
return buildTree(nums,0,nums.length-1);
}
public TreeNode buildTree(int[] nums,int left,int right){
if(left == right){
return new TreeNode(nums[left]);
}
if(left > right){
return null;
}
int index = left + (right - left)/2;
TreeNode root = new TreeNode(nums[index]);
root.left = buildTree(nums,left,index-1);
root.right = buildTree(nums,index+1,right);
return root;
}
}
538-把二叉搜索树转换为累加树
题目
代码实现
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
// 自己直接想到的办法
// int sum;
// public TreeNode convertBST(TreeNode root) {
// // 先求得总共的值
// sum = postOrder(root);
// infixOrderChangeValue(root);
// return root;
// }
// public int postOrder(TreeNode node){
// if(node == null){
// return 0;
// }
// int leftValue = postOrder(node.left);
// int rightValue = postOrder(node.right);
// return leftValue + rightValue + node.val;
// }
// public void infixOrderChangeValue(TreeNode node){
// if(node == null){
// return;
// }
// infixOrderChangeValue(node.left);
// int temp = node.val;
// node.val = sum;
// sum = sum - temp;
// infixOrderChangeValue(node.right);
// }
// 速度优化,代码精简,思路提升。从后往前累加(把搜索树看成一个数组,中序反过来累加即可)。 1ms -> 0ms
TreeNode pre;
public TreeNode convertBST(TreeNode root) {
reverseInfixOrderChangeValue(root);
return root;
}
public void reverseInfixOrderChangeValue(TreeNode node){
if(node == null){
return;
}
reverseInfixOrderChangeValue(node.right);// 右
if(pre != null){//中
node.val = node.val + pre.val;
}
pre = node;
reverseInfixOrderChangeValue(node.left);// 左
}
}
已复习 代码随想录-二叉树总结篇