spark sql 中的结构化数据

1. 连接mysql

首先需要把mysql-connector-java-5.1.39.jar 拷贝到 spark 的jars目录里面;

scala> import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.SQLContext

scala> val sqlContext=new SQLContext(sc)
warning: there was one deprecation warning; re-run with -deprecation for details
sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@3a649f9a

scala>  sqlContext.read.format("jdbc").options(Map("url" -> "jdbc:mysql://localhost:3306/metastore",
     |  "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "DBS", "user" -> "root", "password" -> "root")).load().show
+-----+--------------------+--------------------+-------+----------+----------+
|DB_ID|                DESC|     DB_LOCATION_URI|   NAME|OWNER_NAME|OWNER_TYPE|
+-----+--------------------+--------------------+-------+----------+----------+
|    1|Default Hive data...|hdfs://localhost:...|default|    public|      ROLE|
|    2|                null|hdfs://localhost:...|    aaa|      root|      USER|
|    6|                null|hdfs://localhost:...| userdb|      root|      USER|
+-----+--------------------+--------------------+-------+----------+----------+

-----------------------------------------------------------------------------------------------------------------

scala> import org.apache.spark.sql.{SQLContext,SparkSession}

import org.apache.spark.sql.{SQLContext, SparkSession}

scala> val url="jdbc:mysql://localhost:3306/test?user=root&password=root&useUnicode=true&characterEncoding=UTF-8"
url: String = jdbc:mysql://localhost:3306/test?user=root&password=root&useUnicode=true&characterEncoding=UTF-8

scala> val con = new SQLContext(sc);

warning: there was one deprecation warning; re-run with -deprecation for details

con: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@3a973b5e

scala> con.read.format("jdbc").options(Map("url"->url,"dbtable"->"role")).load.show
+------+----+-------------------+-------------------+---+-----+
|roleid|name|             dateid|               addr|sex|level|
+------+----+-------------------+-------------------+---+-----+
|     1|null|2017-11-16 14:49:11|henan luohe linying|  1|   10|
|    40|null|2017-11-13 14:50:25| guangdong shenzhen|  1|   20|
|   110|null|2017-11-14 14:50:47|            beijing|  1|   20|
|   200|null|2017-11-14 14:49:47|   shandong qingdao|  0|    8|
|   400|null|2017-11-15 14:49:56|        anhui hefei|  0|    4|
|   600|null|2017-11-15 14:50:05|     hunan changsha|  0|   91|
|   650|null|2017-11-01 17:24:34|               null|  1|   29|
|   651|wang|2018-06-06 16:16:55|           shenzhen|  1|   60|
+------+----+-------------------+-------------------+---+-----+

scala> con.read.format("jdbc").option("url",url).option("dbtable","role").load.show
+------+----+-------------------+-------------------+---+-----+
|roleid|name|             dateid|               addr|sex|level|
+------+----+-------------------+-------------------+---+-----+
|     1|null|2017-11-16 14:49:11|henan luohe linying|  1|   10|
|    40|null|2017-11-13 14:50:25| guangdong shenzhen|  1|   20|
|   110|null|2017-11-14 14:50:47|            beijing|  1|   20|
|   200|null|2017-11-14 14:49:47|   shandong qingdao|  0|    8|
|   400|null|2017-11-15 14:49:56|        anhui hefei|  0|    4|
|   600|null|2017-11-15 14:50:05|     hunan changsha|  0|   91|
|   650|null|2017-11-01 17:24:34|               null|  1|   29|
|   651|wang|2018-06-06 16:16:55|           shenzhen|  1|   60|
+------+----+-------------------+-------------------+---+-----+

scala> val session=SparkSession.builder.getOrCreate()
session: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@71e393a2

scala> session.read.format("jdbc").options(Map("url"->url,"dbtable"->"role")).load.show
+------+----+-------------------+-------------------+---+-----+
|roleid|name|             dateid|               addr|sex|level|
+------+----+-------------------+-------------------+---+-----+
|     1|null|2017-11-16 14:49:11|henan luohe linying|  1|   10|
|    40|null|2017-11-13 14:50:25| guangdong shenzhen|  1|   20|
|   110|null|2017-11-14 14:50:47|            beijing|  1|   20|
|   200|null|2017-11-14 14:49:47|   shandong qingdao|  0|    8|
|   400|null|2017-11-15 14:49:56|        anhui hefei|  0|    4|
|   600|null|2017-11-15 14:50:05|     hunan changsha|  0|   91|
|   650|null|2017-11-01 17:24:34|               null|  1|   29|
|   651|wang|2018-06-06 16:16:55|           shenzhen|  1|   60|
+------+----+-------------------+-------------------+---+-----+

scala> session.read.format("jdbc").option("url",url).option("dbtable","role").load.show
+------+----+-------------------+-------------------+---+-----+
|roleid|name|             dateid|               addr|sex|level|
+------+----+-------------------+-------------------+---+-----+
|     1|null|2017-11-16 14:49:11|henan luohe linying|  1|   10|
|    40|null|2017-11-13 14:50:25| guangdong shenzhen|  1|   20|
|   110|null|2017-11-14 14:50:47|            beijing|  1|   20|
|   200|null|2017-11-14 14:49:47|   shandong qingdao|  0|    8|
|   400|null|2017-11-15 14:49:56|        anhui hefei|  0|    4|
|   600|null|2017-11-15 14:50:05|     hunan changsha|  0|   91|
|   650|null|2017-11-01 17:24:34|               null|  1|   29|
|   651|wang|2018-06-06 16:16:55|           shenzhen|  1|   60|
+------+----+-------------------+-------------------+---+-----+

scala> import java.util.Properties

import java.util.Properties

scala> val pro=new Properties()

pro: java.util.Properties = {}

scala> session.read.jdbc(url,"role",pro).show
+------+----+-------------------+-------------------+---+-----+
|roleid|name|             dateid|               addr|sex|level|
+------+----+-------------------+-------------------+---+-----+
|     1|null|2017-11-16 14:49:11|henan luohe linying|  1|   10|
|    40|null|2017-11-13 14:50:25| guangdong shenzhen|  1|   20|
|   110|null|2017-11-14 14:50:47|            beijing|  1|   20|
|   200|null|2017-11-14 14:49:47|   shandong qingdao|  0|    8|
|   400|null|2017-11-15 14:49:56|        anhui hefei|  0|    4|
|   600|null|2017-11-15 14:50:05|     hunan changsha|  0|   91|
|   650|null|2017-11-01 17:24:34|               null|  1|   29|
|   651|wang|2018-06-06 16:16:55|           shenzhen|  1|   60|
+------+----+-------------------+-------------------+---+-----+

2.连接hive,首先需要将hive的配置文件hive-site.xml拷贝到spark的conf目录下或者在conf目录下新建hive-site.xml,添加以下内容

(由于从hive拷贝过来的文件报错,因此本人采用了新建文件的方式)

<configuration>
<property>
    <name>javax.jdo.option.ConnectionURL</name>
    <value>jdbc:mysql://localhost:3306/metastore?createDatabaseIfNotExist=true</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionDriverName</name>
    <value>com.mysql.jdbc.Driver</value>
    <description>Driver class name for a JDBC metastore</description>
  </property>
<property>
  <name>javax.jdo.option.ConnectionUserName</name>
  <value>root</value>
</property>
<property>
  <name>javax.jdo.option.ConnectionPassword</name>
  <value>root</value>
</property>
 <property>
    <name>hive.metastore.warehouse.dir</name>
    <value>/user/hive/warehouse</value>
    <description>location of default database for the warehouse</description>
  </property>
<property>
<name>hive.exec.scratchdir</name>
<value>/tmp/hive/tmp</value>
</property>
<property>
<name>hive.querylog.location</name>
<value>/tmp/hive/log</value>
</property>
</configuration>

启动 spark-shell:

HiveContext读取hive

scala> import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.hive.HiveContext

scala> val hivecon=new HiveContext(sc)
warning: there was one deprecation warning; re-run with -deprecation for details
hivecon: org.apache.spark.sql.hive.HiveContext = org.apache.spark.sql.hive.HiveContext@1b96f15e

scala> hivecon.sql("show databases").show
+------------+
|databaseName|
+------------+
|         aaa|
|     default|
|   sparkhive|
|      userdb|
+------------+

--------------------------------------------

--SparkSession读取hive

scala> import org.apache.spark.sql.SparkSession

import org.apache.spark.sql.SparkSession

scala> val session=SparkSession.builder.getOrCreate()

session: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@331d651b

scala> session.sql("select sex,count(1) from gamedw.cust group by sex").show
+---+--------+
|sex|count(1)|
+---+--------+
|  1|       6|
|  0|       3|
+---+--------+

上一篇:07.LoT.UI 前后台通用框架分解系列之——强大的文本编辑器


下一篇:linux第11天 共享内存和信号量