微服务架构-05

目录

Sentinel简介

背景分析

Sentinel概述

安装Sentinel服务

访问Sentinal服务

Sentinel限流入门

概述

Sentinel集成

Sentinel限流快速入门

Sentinel流控规则分析

阈值类型分析

设置限流模式

设计限流效果(了解)

小节面试分析


Sentinel简介



背景分析

在我们日常生活中,经常会在淘宝、天猫、京东、拼多多等平台上参与商品的秒杀、抢购以及一些优惠活动,也会在节假日使用12306 手机APP抢火车票、高铁票,甚至有时候还要帮助同事、朋友为他们家小孩拉投票、刷票,这些场景都无一例外的会引起服务器流量的暴涨,导致网页无法显示、APP反应慢、功能无法正常运转,甚至会引起整个网站的崩溃。
我们如何在这些业务流量变化无常的情况下,保证各种业务安全运营,系统在任何情况下都不会崩溃呢?我们可以在系统负载过高时,采用限流、降级和熔断,三种措施来保护系统,由此一些流量控制中间件诞生。例如Sentinel。
 

Sentinel概述

Sentinel (分布式系统的流量防卫兵) 是阿里开源的一套用于服务容错的综合性解决方案。它以流量为切入点, 从流量控制、熔断降级、系统负载保护等多个维度来保护服务的稳定性。
Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景, 例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
 

Sentinel核心分为两个部分:

  • 核心库(Java 客户端):能够运行于所有 Java 运行时环境,同时对Dubbo /Spring Cloud 等框架也有较好的支持。
  • 控制台(Dashboard):基于 Spring Boot 开发,打包后可以直接运行。

安装Sentinel服务

Sentinel 提供一个轻量级的控制台, 它提供机器发现、单机资源实时监控以及规则管理等功能,其控制台安装步骤如下:
第一步:打开sentinel下载网址 

https://github.com/alibaba/Sentinel/releases

 第二步:下载Jar包(可以存储到一个sentinel目录),如图所示:

微服务架构-05

 第三步:在sentinel对应目录,打开命令行(cmd),启动运行sentinel

java -Dserver.port=8180 -Dcsp.sentinel.dashboard.server=localhost:8180 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard-1.8.0.jar

 检测启动过程,如图所示:

微服务架构-05

访问Sentinal服务

第一步:假如Sentinal启动ok,通过浏览器进行访问测试,如图所示:

微服务架构-05

 第二步:登陆sentinel,默认用户和密码都是sentinel,登陆成功以后的界面如图所示:

微服务架构-05

Sentinel限流入门



概述

我们系统中的数据库连接池,线程池,nginx的瞬时并发,MQ消息等在使用时都会跟定一个限定的值,这本身就是一种限流的设计。限流的目的防止恶意请求流量、恶意攻击,或者防止流量超过系统峰值。

Sentinel集成

第一步:Sentinel 应用于服务消费方(Consumer),在消费方添加依赖如下:

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

第二步:打开服务消费方配置文件application.yml,添加sentinel配置,代码如下:

spring:
  cloud:
    sentinel:
      transport:
         port: 8099 #跟sentinel控制台交流的端口,随意指定一个未使用的端口即可
         dashboard: localhost:8180 # 指定sentinel控制台地址。

第三步:启动服务提供者,服务消费者,然后在浏览器访问消费者url,如图所示:

微服务架构-05

 第四步:刷新sentinel 控制台,检测服务列表,如图所示:

微服务架构-05

 Sentinel的控制台其实就是一个SpringBoot编写的程序,我们需要将我们的服务注册到控制台上,即在微服务中指定控制台的地址,并且还要在消费端开启一个与sentinel控制台传递数据端的端口,控制台可以通过此端口调用微服务中的监控程序来获取各种信息。

Sentinel限流快速入门

我们设置一下指定接口的流控(流量控制),QPS(每秒请求次数)单机阈值为1,代表每秒请求不能超出1次,要不然就做限流处理,处理方式直接调用失败。

第一步:选择要限流的链路,如图所示:

微服务架构-05

第二步:设置限流策略,如图所示:

微服务架构-05

 第三步:反复刷新访问消费端端服务,检测是否有限流信息输出,如图所示:

微服务架构-05

Sentinel流控规则分析



阈值类型分析

  • QPS(Queries Per Second):当调用相关url对应的资源时,QPS达到单机阈值时,就会限流。

  • 线程数:当调用相关url对应的资源时,线程数达到单机阈值时,就会限流。

设置限流模式

Sentinel的流控模式代表的流控的方式,默认【直接】,还有关联,链路。

直接模式

Sentinel默认的流控处理就是【直接->快速失败】。

微服务架构-05

关联模式

当关联的资源达到阈值,就限流自己。例如设置了关联资源为/ur2时,假如关联资源/url2的qps阀值超过1时,就限流/url1接口(是不是感觉很霸道,关联资源达到阀值,是本资源接口被限流了)。这种关联模式有什么应用场景呢?我们举个例子,订单服务中会有2个重要的接口,一个是读取订单信息接口,一个是写入订单信息接口。在高并发业务场景中,两个接口都会占用资源,如果读取接口访问过大,就会影响写入接口的性能。业务中如果我们希望写入订单比较重要,要优先考虑写入订单接口。那就可以利用关联模式;在关联资源上面设置写入接口,资源名设置读取接口就行了;这样就起到了优先写入,一旦写入请求多,就限制读的请求。例如:


微服务架构-05

 微服务架构-05

链路模式

链路模式只记录指定链路入口的流量。也就是当多个服务对指定资源调用时,假如流量超出了指定阈值,则进行限流。被调用的方法用@SentinelResource进行注解,然后分别用不同业务方法对此业务进行调用,假如A业务设置了链路模式的限流,在B业务中是不受影响的。例如现在设计一个业务对象,代码如下(为了简单,可以直接写在启动类内部):
 

@Service
public class ConsumerService{
    @SentinelResource("doGetResource")
    public String doGetResource(){
        return "doGetResource";
    }
}

 接下来我们在/consumer/doRestEcho1对应的方法中对ConsumerService中的doGetResource方法进行调用(应用consumerService对象之前,要先在doRestEcho01方法所在的类中进行consumerService值的注入)。例如:
 

   @GetMapping("/consumer/doRestEcho1")
    public String doRestEcho01() throws InterruptedException {
        consumerService.doGetResource();
        //Thread.sleep(200);
        String url="http://localhost:8081/provider/echo/"+server;
        //远程过程调用-RPC
        return restTemplate.getForObject(url,String.class);//String.class调用服务响应数据类型
    }

其路由规则配置如下:

微服务架构-05

 微服务架构-05

 说明,流控模式为链路模式时,假如是sentinel 1.7.2以后版本,Sentinel Web过滤器默认会聚合所有URL的入口为sentinel_spring_web_context,因此单独对指定链路限流会不生效,需要在application.yml添加如下语句来关闭URL PATH聚合,例如:
 

sentinel:
     web-context-unify: false
server:
  port: 8090 #默认为8080
spring:
  application:
    name: sca-consumer #假如做服务注册,必须写
  cloud:
    nacos:
      discovery:
        server-addr: localhost:8848 #nacos server 地址
    sentinel:
      transport:
        dashboard: localhost:8180 # sentinel 控制面板地址
        #port: 8719 #sentine 客户端端口
      web-context-unify: false
feign:
  hystrix:
    enabled: true

修改配置以后,重新sentinel,并设置链路流控规则,然后再频繁对链路/consumer/doRestEcho1进行访问,检测是否会出现500异常。

微服务架构-05

设计限流效果(了解)

此模块做为课后了解内容,感兴趣自学即可.

快速失败

流量达到指定阀值,直接返回报异常。(类似路前方坍塌,后面设定路标,让后面的车辆返回)

WarmUp (预热)

WarmUp也叫预热,根据codeFactor(默认3)的值,(阀值/codeFactor)为初始阈值,经过预热时长,才到达设置的QPS的阈值,假如单机阈值为100,系统初始化的阈为 100/3 ,即阈值为33,然后过了10秒,阈值才恢复到100。这个预热的应用场景,如:秒杀系统在开启的瞬间,会有很多流量上来,很有可能把系统打死,预热方式就是把为了保护系统,可慢慢的把流量放进来,慢慢的把阈值增长到设置的阈值。例如:
 

微服务架构-05

 排队等待

从字面上面就能够猜到,匀速排队,让请求以均匀的速度通过,阈值类型必须设成QPS,否则无效。比如有时候系统在某一个时刻会出现大流量,之后流量就恢复稳定,可以采用这种排队模式,大流量来时可以让流量请求先排队,等恢复了在慢慢进行处理,例如:

微服务架构-05

小节面试分析

  • Sentinel是什么?(阿里推出一个流量控制平台,防卫兵)
  • 类似Sentinel的产品你知道有什么?(hystrix-一代微服务产品)
  • 你了解哪些限流算法?(计数器、令牌桶、漏斗算法,滑动窗口算法,…)
  • Sentinel 默认的限流算法是什么?(滑动窗口算法)
  • 你了解sentinel中的阈值应用类型吗?(两种-QPS,线程数)
  • Sentinel 限流规则中默认有哪些限流模式?(直连,关联,链路)
  • Sentinel的限流效果有哪些?(快速失败,预热,排队)
  • Sentinel 为什么可以对我们的业务进行限流,原理是什么?
    我们在访问web应用时,在web应用内部会有一个拦截器,这个拦截器会对请求的url进行拦截,拦截到请求以后,读取sentinel 控制台的流控规则,基于流控规则对流量进行限流操作。

上一篇:redis的主从自动切换


下一篇:【SpringCloud】Sentinel限流熔断应用实践