题解 「SCOI2016」萌萌哒

link

Description

一个长度为 $ n $ 的大数,用 $ S_1S_2S_3 \ldots S_n $表示,其中 $ S_i $ 表示数的第 $ i $ 位,$ S_1 $ 是数的最高位,告诉你一些限制条件,每个条件表示为四个数 $ (l_1, r_1, l_2, r_2) $,即两个长度相同的区间,表示子串 $ S_{l_1}S_{l_1 + 1}S_{l_1 + 2} \ldots S_{r_1} $ 与 $ S_{l_2}S_{l_2 + 1}S_{l_2 + 2} \ldots S_{r_2} $ 完全相同。

比如 $ n = 6 $ 时,某限制条件 $ (l_1 = 1, r_1 = 3, l_2 = 4, r_2 = 6) $,那么 $ 123123 \(、\) 351351 $ 均满足条件,但是 $ 12012 \(、\) 131141 $ 不满足条件,前者数的长度不为 $ 6 $,后者第二位与第五位不同。问满足以上所有条件的数有多少个。

\(n\le 10^5\)

Solution

可以想到,我们用 \(f_{i,j}\) 表示 \([i,i+2^j-1]\) 这一段区间,然后每次合并两个区间就相当于合并 \(f_{l1,k},f_{l2,k}\) 以及 \(f_{r1-2^k+1,k},f_{r2-2^k+1,k}\)

然后我们还需要将儿子也下传一下合并标记即可。

Code

#include <bits/stdc++.h>
using namespace std;

#define Int register int
#define mod 1000000007
#define MAXN 100005

template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < ‘0‘ || c > ‘9‘){if (c == ‘-‘) f = -f;c = getchar();}while (c >= ‘0‘ && c <= ‘9‘){t = (t << 3) + (t << 1) + c - ‘0‘;c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar (‘-‘);}if (x > 9) write (x / 10);putchar (x % 10 + ‘0‘);}
template <typename T> inline void chkmax (T &a,T b){a = max (a,b);}
template <typename T> inline void chkmin (T &a,T b){a = min (a,b);}

int n,m,tot,lg[MAXN],f[MAXN][21],ls[MAXN * 21],rs[MAXN * 21],fa[MAXN * 21];

int findSet (int x){return fa[x] == x ? x : fa[x] = findSet (fa[x]);}
void unionSet (int x,int y){
	x = findSet (x),y = findSet (y);
	if (x == y) return ;
	fa[y] = x;
}

signed main(){
	read (n,m);
	for (Int i = 2;i <= n;++ i) lg[i] = lg[i >> 1] + 1;
	for (Int j = 0;(1 << j) <= n;++ j)
		for (Int i = 1;i + (1 << j) - 1 <= n;++ i)
			f[i][j] = ++ tot,fa[tot] = tot;
	for (Int j = 1;(1 << j) <= n;++ j)
		for (Int i = 1;i + (1 << j) - 1 <= n;++ i)
			ls[f[i][j]] = f[i][j - 1],rs[f[i][j]] = f[i + (1 << j - 1)][j - 1];
	for (Int i = 1;i <= m;++ i){
		int l1,r1,l2,r2;read (l1,r1,l2,r2);
		int k = lg[r1 - l1 + 1];
		unionSet (f[l1][k],f[l2][k]);
		unionSet (f[r1 - (1 << k) + 1][k],f[r2 - (1 << k) + 1][k]);
	}
	for (Int j = lg[n];j >= 1;-- j)
		for (Int i = 1;i + (1 << j) - 1 <= n;++ i){
			int t = findSet (f[i][j]);
			if (t == f[i][j]) continue;
			unionSet (ls[t],ls[f[i][j]]);
			unionSet (rs[t],rs[f[i][j]]);
		}
	int cnt = n,res = 9;
	for (Int i = 1;i <= n;++ i) if (findSet (f[i][0]) != f[i][0]) cnt --;
	for (Int i = 1;i < cnt;++ i) res = 1ll * res * 10 % mod;
	write (res),putchar (‘\n‘);
	return 0;
}

题解 「SCOI2016」萌萌哒

上一篇:Codeforces Round # 740 (Div.2) 比赛总结


下一篇:echarts中使图表循环显示tooltip-封装tooltip的方*询显示图表数据