​LeetCode刷题实战162:寻找峰值

算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。所以,为了提高大家的算法能力,后续每天带大家做一道算法题,题目就从LeetCode上面选 !今天和大家聊的问题叫做 寻找峰值  ,我们先来看题面:

A peak element is an element that is strictly greater than its neighbors.

 

Given an integer array nums, find a peak element, and return its index. If the array contains multiple peaks, return the index to any of the peaks.

 

You may imagine that nums[-1] = nums[n] = -∞.

题意

峰值元素是指其值大于左右相邻值的元素。给你一个输入数组 nums,找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回 任何一个峰值 所在位置即可。你可以假设 nums[-1] = nums[n] = -∞ 。样例

示例 1:

输入:nums = [1,2,3,1]
输出:2
解释:3 是峰值元素,你的函数应该返回其索引 2。

示例 2:

输入:nums = [1,2,1,3,5,6,4]
输出:1 或 5
解释:你的函数可以返回索引 1,其峰值元素为 2;
  或者返回索引 5, 其峰值元素为 6。

 

解题

思路一:暴力破解法逐个遍历数组中的元素即可。时间复杂度是O(n),其中n为数组中的元素个数。空间复杂度是O(1)。

 

public class Solution {
    public int findPeakElement(int[] nums) {
        if(1 == nums.length){
            return 0;
        }
        for(int i = 0; i < nums.length; i++){
            if(i == 0){
                if(nums[0] > nums[1]){
                    return 0;
                }
            }else if(i == nums.length - 1){
                if(nums[nums.length - 1] > nums[nums.length - 2]){
                    return nums.length - 1;
                }
            }else{
                if(nums[i] > nums[i - 1] && nums[i] > nums[i + 1]){
                    return i;
                }
            }
        }
        return -1;
    }
}

 

思路二:二分查找法

思路一显然没有利用题目所给的一个条件——nums[i] ≠ nums[i+1],且根据题意,我们只需任意找出一个顶峰即可,那么我们可以采取二分查找法。我们取中间mid位置,如果该点满足要求,就直接找到了这个索引,就是mid。否则,我们二分搜索mid索引左边和右边较高的那个点的那一边,我们就一定能找到一个顶峰,这是为什么呢?我们将索引分成2段,[left, mid - 1],[mid + 1, right],如果mid不满足要求,那么说明mid - 1和mid + 1这两个位置必然有一个位置的值大于mid位置的值。而mid - 1和mid + 1中的较大者必然是大于mid位置的值的。假设mid - 1位置的值大于等于mid + 1位置的值,那么我们再[left, mid - 1]中一定能找到一个顶峰。因为题目规定了nums[i] ≠ nums[i+1],而mid - 1位置已经保证了大于mid位置的值,即相当于我们可以把[left, mid - 1]之间的元素看成一个新的数组,其-1和mid位置的值都为-∞,因此在[left, mid - 1]之间比如能找到一个顶峰。。时间复杂度是O(logn),其中n为数组中的元素个数。空间复杂度是O(1)。

public class Solution {
    public int findPeakElement(int[] nums) {
        return findPeakElement(nums, 0, nums.length - 1);
    }
    private int findPeakElement(int[] nums, int left, int right){
        if(left == right){
            return left;
        }
        int mid = left + (right - left) / 2;
        if(mid + 1 < nums.length){
            if(mid - 1 >= 0){
                if(nums[mid] > nums[mid + 1] && nums[mid] > nums[mid - 1]){
                    return mid;
                }else if(nums[mid + 1] > nums[mid - 1]){
                    return findPeakElement(nums, mid + 1, right);
                }else{
                    return findPeakElement(nums, left, mid - 1);
                }
            }else{
                if(nums[mid] > nums[mid + 1]){
                    return mid;
                }else{
                    return findPeakElement(nums, mid + 1, right);
                }
            }
        }else{
            if(nums[mid] > nums[mid - 1]){
                return mid;
            }else{
                return findPeakElement(nums, left, mid - 1);
            }
        }
    }
}

好了,今天的文章就到这里,你们的支持是我最大的动力 。

 

​LeetCode刷题实战162:寻找峰值

上一篇:【数据结构与算法】之深入解析“组合总和III”的求解思路与算法示例


下一篇:Jquery+Ajax+php学习笔记