1 题目
A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.
For example, [1,7,4,9,2,5]
is a wiggle sequence because the differences (6,-3,5,-7,3)
are alternately positive and negative. In contrast, [1,4,7,2,5]
and [1,7,4,5,5]
are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.
Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.
Example 1:
Input: [1,7,4,9,2,5]
Output: 6
Explanation: The entire sequence is a wiggle sequence.
Example 2:
Input: [1,17,5,10,13,15,10,5,16,8]
Output: 7
Explanation: There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8].
Example 3:
Input: [1,2,3,4,5,6,7,8,9]
Output: 2
2 尝试解
2.1 分析
给定一个整数向量,问不改变元素相对顺序的情况下,能构成的最大振荡数列的长度。
振荡数列随向量的扩张是连续变化的,所以这是一个典型的动态递归问题,最长子列可能是小→大→小→大,那么奇数项是小项,偶数项是大项;也可能是大→小→大→小,那么奇数项是大项,偶数项是小项。所以,对于任意元素nums[i],向左寻找能连接到两种数列的最近一个元素。如对于元素15,如果放在小项开头的数列中,
- 如果作为偶数项加入,则要找到前一个比他小的元素,且该元素在数列中为奇数项,即元素5
- 如果作为奇数项加入,则要找到前一个比他大的元素,且该元素在数列中为偶数项,即元素17
只要找到就停止寻找,所以找到5就会停止,即15作为第4项加在小项开头数列中。大项开头的数列同理。
动态规划完成,结果如下所示:
1 17 5 10 13 15 10 5 16 8
小项开头 1 2 3 4 4 4 5 5 6 7
大项开头 1 1 2 3 3 3 4 4 5 6
2.2 代码
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
vector<int> first_big(nums.size(),1);
vector<int> first_small(nums.size(),1);
int result = nums.size()? 1 : 0;
for(int i = 1; i < nums.size(); i++){
for(int j = i - 1; j >= 0; j--){
if((nums[j] > nums[i] && first_small[j] % 2 == 0)||(nums[j] < nums[i] && first_small[j] % 2 == 1)){
first_small[i] = first_small[j] + 1;
if(first_small[i] > result)
result = first_small[i];
break;
}
}
for(int j = i - 1; j >= 0; j--){
if((nums[j] > nums[i] && first_big[j]%2 == 1)|| (nums[j] < nums[i] && first_big[j] % 2 == 0)){
first_big[i] = first_big[j] + 1;
if(first_big[i] > result)
result = first_big[i];
break;
}
}
}
return result;
}
};
3 标准解
int wiggleMaxLength(vector<int>& nums) {
int size = nums.size();
if (size == 0) return 0;
int up = 1, down = 1;
for (int i = 1; i < size; ++i) {
if (nums[i] > nums[i-1]) {
up = down + 1;
} else if (nums[i] < nums[i-1]) {
down = up + 1;
}
}
return max(up, down);
}