约数:如果整数a能被整数b整除,那么a叫做b的倍数,b叫做a的约数
给定两个整数a,b,两个数所有公约数中的最大值即为最大公约数
如何计算两个数的最大公约数:
欧几里得——辗转相除法
#递归算法
def gcd(a, b):
if b == 0:
return a
else:
return gcd(b, a % b)
#非递归算法
def gcd_2(a, b):
while b > 0:
r = a % b
a = b
b = r
return a
eg:利用欧几里得算法实现一个分数类,支持分数的四则运算
class Fraction:
def __init__(self,a,b): #a分子 b分母
self.a = a
self.b = b
x = self.gcd(a, b)
self.a /= x
self.b /= x
def gcd(self, a, b):
while b > 0:
r = a % b
a = b
b = r
return a
def zgs(self, a, b): #最小公倍数
x = self.gcd(a, b)
return (a * b ) / x
def __add__(self, other):
a = self.a
b = self.b
c = other.a
d = other.b
fenmu = self.zgs(b, d)
fenzi = a * (fenmu / b) + c * (fenmu / d)
return Fraction(fenzi, fenmu)
def __sub__(self, other):
a = self.a
b = self.b
c = other.a
d = other.b
fenmu = self.zgs(b, d)
fenzi = a * (fenmu / b) - c * (fenmu / d)
return Fraction(fenzi, fenmu)
def __mul__(self, other):
a = self.a
b = self.b
c = other.a
d = other.b
fenmu = b * d
fenzi = a * c
return Fraction(fenzi, fenmu)
def __truediv__(self, other):
a = self.a
b = self.b
c = other.a
d = other.b
fenmu = b * c
fenzi = a * b
return Fraction(fenzi, fenmu)
def __str__(self):
if self.b == 1:
return "%d" % self.a
else:
return "%d/%d" % (self.a, self.b)
a = Fraction(2,3)
b = Fraction(1,2)
print(a/b)