集合遍历(子集遍历)--二进制

 集合的概念

写法一:

集合遍历(子集遍历)--二进制

 

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 int u;
 4 int n, a[10];
 5 int main()
 6 {
 7     cin>>n;
 8     for(int i=0; i<n; i++)
 9         cin>>a[i];
10         
11     cout<<"原集合为:{";
12     for(int i=0; i<n; i++)
13         cout<<a[i]<<",";
14     cout<<"}"<<endl;
15     
16     //将集合转二进制 
17     for(int i=0; i<4; i++){
18         u+=(1<<a[i]);
19     }
20     
21     cout<<"该集合的非空子集为"<<endl;
22     // 遍历 u 的非空子集
23     for(int s = u; s; s = (s - 1) & u) {
24       // s 是 u 的一个非空子集
25         int t=s;
26         cout<<"{";
27         for(int i=0; i<=8; i++){
28             if(t & (1<<i))
29                 cout<<i<<",";
30         }
31         cout<<"}";
32         cout<<endl;
33     }
34 
35     return 0;
36 }

集合遍历(子集遍历)--二进制

 

写法二:

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 int a[10];
 4 void print_subset(int n)
 5 {
 6     for(int i=0; i<(1<<n); i++){
 7         for(int j=0; j<n; j++)
 8             if(i&(1<<j))
 9                 cout<<a[j]<<" ";
10         cout<<endl;
11     }
12 }
13 int main()
14 {
15     int n;
16     cin>>n;
17     for(int i=0; i<n; i++)
18         cin>>a[i];
19     print_subset(n);
20     return 0;
21  }

时间复杂度:n*2n

 

 

 

 

上一篇:DFS合集---5.没有重复元素集合的全排列(剑指offer-83)


下一篇:Subsets II