前言
相信好多小伙伴在看到矩阵的逆的定义时都会有个小疑惑,为什么只需要证明
A
B
=
E
AB=E
AB=E,则就可以说明B是A的逆,而无需再证
B
A
=
E
BA=E
BA=E,这里给出个小证明。
由
A
B
=
E
AB=E
AB=E得
∑
k
=
1
n
a
i
k
b
k
j
=
{
1
,
i
=
j
0
,
i
≠
j
\sum_{k=1}^{n}a_{ik}b_{kj}= \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}
k=1∑naikbkj={1,0,i=ji=j
n为方阵的大小
记
A
i
j
A_{ij}
Aij为矩阵A对应位置的代数余子式,结合上式(两边乘
A
s
i
A_{si}
Asi)可构造以下等式
A
s
i
⋅
∑
k
=
1
n
a
s
k
b
k
j
=
{
A
j
i
,
s
=
j
0
,
s
≠
j
A_{si} \cdot \sum_{k=1}^{n}a_{sk}b_{kj}= \begin{cases} A_{ji}, & s = j \\ 0, & s \neq j \end{cases}
Asi⋅k=1∑naskbkj={Aji,0,s=js=j
其中
s
=
1
,
2
,
.
.
.
,
n
s=1,2,...,n
s=1,2,...,n
对不同s求和
∑
s
=
1
n
A
s
i
⋅
∑
k
=
1
n
a
s
k
b
k
j
=
A
j
i
\sum_{s=1}^{n}A_{si} \cdot \sum_{k=1}^{n}a_{sk}b_{kj}=A_{ji}
s=1∑nAsi⋅k=1∑naskbkj=Aji
交换求和顺序,并将
b
k
j
b_{kj}
bkj提出得
∑
k
=
1
n
b
k
j
⋅
∑
s
=
1
n
a
s
k
A
s
i
=
A
j
i
\sum_{k=1}^{n}b_{kj} \cdot \sum_{s=1}^{n}a_{sk}A_{si}=A_{ji}
k=1∑nbkj⋅s=1∑naskAsi=Aji
结合代数余子式的性质
∑
s
=
1
n
a
s
k
A
s
i
=
{
∣
A
∣
,
k
=
i
0
,
k
≠
i
\sum_{s=1}^{n}a_{sk}A_{si}= \begin{cases} \left | A\right | , & k = i \\ 0, & k \neq i \end{cases}
s=1∑naskAsi={∣A∣,0,k=ik=i可得
b
i
j
⋅
∣
A
∣
=
A
j
i
b_{ij} \cdot \left | A\right | =A_{ji}
bij⋅∣A∣=Aji
对
A
B
=
E
AB=E
AB=E两边取行列式得:
∣
A
∣
∣
B
∣
=
1
|A| |B|=1
∣A∣∣B∣=1,即可推出:
∣
A
∣
≠
0
|A| \neq 0
∣A∣=0
故有以下重要等式
b
i
j
=
A
j
i
∣
A
∣
b_{ij} = \frac{A_{ji}}{\left | A\right | }
bij=∣A∣Aji
故有
∑
k
=
1
n
b
i
k
a
k
j
=
∑
k
=
1
n
A
k
i
∣
A
∣
⋅
a
k
j
=
1
∣
A
∣
⋅
∑
k
=
1
n
A
k
i
a
k
j
=
{
1
,
i
=
j
0
,
i
≠
j
\sum_{k=1}^{n}b_{ik}a_{kj}=\sum_{k=1}^{n} \frac{A_{ki}}{\left | A\right | } \cdot a_{kj} = \frac{1}{\left | A\right | } \cdot \sum_{k=1}^{n}A_{ki}a_{kj}= \begin{cases} 1 , & i=j\\ 0, & i \neq j \end{cases}
k=1∑nbikakj=k=1∑n∣A∣Aki⋅akj=∣A∣1⋅k=1∑nAkiakj={1,0,i=ji=j
既
B
A
=
E
BA=E
BA=E,证明完毕。
参考