题解
一个纯的贪心,被我搞成 \(dp\) 了,最后把错解删掉了,骗了 \(10pts\)
考虑如何贪心,设置一种二元组 \((x,l)\),\(x\) 表示当前值,\(l\) 表示当前最长连续长度。
按上述所说设置两个二元组 \(up,down\);\(up\) 表示 \(x\) 为当前最大值,\(down\) 则相反
转移时分情况:
-
当前 \(num_i\) 为零,直接贪心转移
-
当前 \(num_i\) 不为零,若贪心转以后 \(down\) 的值大于 \(num_i\) 或 \(up\) 的值小于 \(sum_i\),无解
那么对于求整个序列,倒着扫一遍,记录一个 \(vis\) 数组记当前值出现的个数,\(num_i=\min(num_{i+1},up_i.x)\),若求出来的数已经有五个了,则减 \(1\)。
证明:
若 \(num_i=num_{i+1}\) 那么 \(up_i.x>num_{i+1}\) 且当前序列一定有合法解,则 \(num_i\) 一定等于 \(num_{i+1}-=[vis[num_{i+1}]=5]\)
另一情况同理
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
typedef long long ll;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf;
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(ch<'0'||ch>'9') {if (ch=='-') f=0;ch=gc();}
while(ch>='0'&&ch<='9') {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
}
using IO::read;
namespace nanfeng{
#define cmax(x,y) ((x)>(y)?(x):(y))
#define cmin(x,y) ((x)>(y)?(y):(x))
#define FI FILE *IN
#define FO FILE *OUT
static const int N=2e5+7;
struct node{int x,l;}up[N],down[N];
int num[N],vist[N],n;
inline int main() {
// FI=freopen("nanfeng.in","r",stdin);
// FO=freopen("nanfeng.out","w",stdout);
read(n);
for (ri i(1);i<=n;p(i)) read(num[i]);
if (num[1]>1) {puts("-1");return 0;}
up[1].l=down[1].l=up[1].x=down[1].x=num[1]=1;
for (ri i(2);i<=n;p(i)) {
if (up[i-1].l==2) up[i].x=up[i-1].x+1,up[i].l=1;
else up[i].x=up[i-1].x,up[i].l=up[i-1].l+1;
if (down[i-1].l==5) down[i].x=down[i-1].x+1,down[i].l=1;
else down[i].x=down[i-1].x,down[i].l=down[i-1].l+1;
if (num[i]) {
if (down[i].x>num[i]||up[i].x<num[i]) {puts("-1");return 0;}
if (down[i].x<num[i]) down[i].x=num[i],down[i].l=1;
if (up[i].x>num[i]) up[i].x=num[i],up[i].l=2;
}
}
num[n]=up[n].x=(up[n].l==2)?up[n].x:up[n].x-1;
vist[num[n]]=1;
printf("%d\n",up[n].x);
for (ri i(n-1);i;--i) {
if (!num[i]) {
int w=cmin(up[i].x,num[i+1]);
if (vist[w]==5) --w;
num[i]=w;
}
p(vist[num[i]]);
}
for (ri i(1);i<=n;p(i)) printf("%d ",num[i]);
return 0;
}
}
int main() {return nanfeng::main();}