剑指 Offer 59 - II. 队列的最大值

请定义一个队列并实现函数 max_value 得到队列里的最大值,要求函数max_value、push_back 和 pop_front 的均摊时间复杂度都是O(1)。

若队列为空,pop_front 和 max_value 需要返回 -1

示例 1:

输入:
["MaxQueue","push_back","push_back","max_value","pop_front","max_value"]
[[],[1],[2],[],[],[]]
输出: [null,null,null,2,1,2]

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/dui-lie-de-zui-da-zhi-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

import java.util.Deque;
import java.util.LinkedList;
import java.util.Queue;

class MaxQueue {

    private Deque<Integer> maxQueue;

    private Queue<Integer> queue = new LinkedList<>();

    public MaxQueue() {
        this.maxQueue = new LinkedList<>();
        this.queue = new LinkedList<>();
    }

    public int max_value() {
        if (maxQueue.isEmpty()) {
            return -1;
        }
        return maxQueue.peekFirst();
    }

    public void push_back(int value) {
        while (!maxQueue.isEmpty() && maxQueue.peekLast() < value) {
            maxQueue.pollLast();
        }
        maxQueue.offerLast(value);
        queue.offer(value);
    }

    public int pop_front() {
        if (queue.isEmpty()) {
            return -1;
        }
        Integer front = queue.poll();
        if (front.equals(maxQueue.peekFirst())) {
            maxQueue.pollFirst();
        }
        return front;
    }
}

/**
 * Your MaxQueue object will be instantiated and called as such:
 * MaxQueue obj = new MaxQueue();
 * int param_1 = obj.max_value();
 * obj.push_back(value);
 * int param_3 = obj.pop_front();
 */
上一篇:229. 求众数 II


下一篇:【题解】[CCO2021] Bread First Search