Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
Example:
Input: "aab" Output: [ ["aa","b"], ["a","a","b"] ]
题目大意:给定一个字符串s,对其进行划分,是的划分后的所有字串都是回文串, 返回所有可能的划分。
思路:回溯法
1 class Solution { 2 public: 3 vector<vector<string>> partition(string s) { 4 vector<vector<string> > res; 5 vector<string> temp; 6 backtrack(s, 0, temp, res); 7 return res; 8 } 9 private: 10 bool isPalindrome(string s, int i, int j) { 11 while (i < j) { 12 if (s[i] != s[j]) 13 return false; 14 i++; 15 j--; 16 } 17 return true; 18 } 19 void backtrack(string &s, int i, vector<string> &v, vector<vector<string>> &res) { 20 if ((i == s.length()) && !v.empty()) { 21 res.push_back(v); 22 return ; 23 } 24 for (int k = i; k < s.length(); ++k) { 25 if (isPalindrome(s, i, k)) { 26 v.push_back(s.substr(i, k - i + 1)); 27 backtrack(s, k + 1, v, res); 28 v.pop_back(); 29 } 30 } 31 } 32 };
时间复杂度:
T(n) = n * [T(n - 1) + ... + T(1)]
T(n + 1) = (n + 1) * [ T(n) + T(n - 1) + ... + T(1)] = (n + 1) * [ T(n) + 1/n * T(n)]
==> T(n) = n * 2^n
优化:判断回文串的时候有大量重复。
1 class Solution { 2 public: 3 vector<vector<string>> partition(string s) { 4 int n = s.size(); 5 vector<vector<int>> dp(n, vector<int>(n, 0)); //dp[i][j]表示下表i到下表j的字串是否为回文串 6 for (int i = 0; i < n; i++) { 7 dp[i][i] = 1; 8 } 9 10 for (int i = 0; i < n - 1; i++) { 11 if (s[i] == s[i+1]) { 12 dp[i][i+1] = 1; 13 } 14 } 15 16 for (int len = 2; len < n; len++) { 17 for (int i = 0; i < n; i++) { 18 if (i + len >= n) { 19 break; 20 } else { 21 if (s[i] == s[i + len]) { 22 dp[i][i+len] = dp[i+1][i+len-1] || dp[i][i+len]; 23 } 24 } 25 } 26 } 27 vector<vector<string> > res; 28 vector<string> temp; 29 backtrack(s, 0, temp, res, dp); 30 return res; 31 } 32 private: 33 void backtrack(string &s, int i, vector<string> &v, vector<vector<string>> &res, vector<vector<int>> &dp) { 34 if ((i == s.length()) && !v.empty()) { 35 res.push_back(v); 36 return ; 37 } 38 for (int k = i; k < s.length(); ++k) { 39 if (dp[i][k]) { 40 v.push_back(s.substr(i, k - i + 1)); 41 backtrack(s, k + 1, v, res, dp); 42 v.pop_back(); 43 } 44 } 45 } 46 };