简介
在数据统计中,经常需要进行一些范围操作,这些范围我们可以称之为一个window 。Pandas提供了一个rolling方法,通过滚动window来进行统计计算。
本文将会探讨一下rolling中的window用法。
滚动窗口
我们有5个数,我们希望滚动统计两个数的和,那么可以这样:
In [1]: s = pd.Series(range(5))
In [2]: s.rolling(window=2).sum()
Out[2]:
0 NaN
1 1.0
2 3.0
3 5.0
4 7.0
dtype: float64
rolling 对象可以通过for来遍历:
In [3]: for window in s.rolling(window=2):
...: print(window)
...:
0 0
dtype: int64
0 0
1 1
dtype: int64
1 1
2 2
dtype: int64
2 2
3 3
dtype: int64
3 3
4 4
dtype: int64
pandas中有四种window操作,我们看下他们的定义:
名称 | 方法 | 返回对象 | 是否支持时间序列 | 是否支持链式groupby操作 |
---|---|---|---|---|
固定或者可滑动的窗口 | rolling |
Rolling |
Yes | Yes |
scipy.signal库提供的加权非矩形窗口 | rolling |
Window |
No | No |
累积值的窗口 | expanding |
Expanding |
No | Yes |
值上的累积和指数加权窗口 | ewm |
ExponentialMovingWindow |
No | Yes (as of version 1.2) |
? 看一个基于时间rolling的例子:
In [4]: s = pd.Series(range(5), index=pd.date_range(‘2020-01-01‘, periods=5, freq=‘1D‘))
In [5]: s.rolling(window=‘2D‘).sum()
Out[5]:
2020-01-01 0.0
2020-01-02 1.0
2020-01-03 3.0
2020-01-04 5.0
2020-01-05 7.0
Freq: D, dtype: float64
设置min_periods可以指定window中的最小的NaN的个数:
In [8]: s = pd.Series([np.nan, 1, 2, np.nan, np.nan, 3])
In [9]: s.rolling(window=3, min_periods=1).sum()
Out[9]:
0 NaN
1 1.0
2 3.0
3 3.0
4 2.0
5 3.0
dtype: float64
In [10]: s.rolling(window=3, min_periods=2).sum()
Out[10]:
0 NaN
1 NaN
2 3.0
3 3.0
4 NaN
5 NaN
dtype: float64
# Equivalent to min_periods=3
In [11]: s.rolling(window=3, min_periods=None).sum()
Out[11]:
0 NaN
1 NaN
2 NaN
3 NaN
4 NaN
5 NaN
dtype: float64
Center window
默认情况下window的统计是以最右为准,比如window=5,那么前面的0,1,2,3 因为没有达到5,所以为NaN。
In [19]: s = pd.Series(range(10))
In [20]: s.rolling(window=5).mean()
Out[20]:
0 NaN
1 NaN
2 NaN
3 NaN
4 2.0
5 3.0
6 4.0
7 5.0
8 6.0
9 7.0
dtype: float64
可以对这种方式进行修改,设置 center=True 可以从中间统计:
In [21]: s.rolling(window=5, center=True).mean()
Out[21]:
0 NaN
1 NaN
2 2.0
3 3.0
4 4.0
5 5.0
6 6.0
7 7.0
8 NaN
9 NaN
dtype: float64
Weighted window 加权窗口
使用 win_type 可以指定加权窗口的类型。其中win_type 必须是scipy.signal 中的window类型。
举几个例子:
In [47]: s = pd.Series(range(10))
In [48]: s.rolling(window=5).mean()
Out[48]:
0 NaN
1 NaN
2 NaN
3 NaN
4 2.0
5 3.0
6 4.0
7 5.0
8 6.0
9 7.0
dtype: float64
In [49]: s.rolling(window=5, win_type="triang").mean()
Out[49]:
0 NaN
1 NaN
2 NaN
3 NaN
4 2.0
5 3.0
6 4.0
7 5.0
8 6.0
9 7.0
dtype: float64
# Supplementary Scipy arguments passed in the aggregation function
In [50]: s.rolling(window=5, win_type="gaussian").mean(std=0.1)
Out[50]:
0 NaN
1 NaN
2 NaN
3 NaN
4 2.0
5 3.0
6 4.0
7 5.0
8 6.0
9 7.0
dtype: float64
扩展窗口
扩展窗口会产生聚合统计信息的值,其中包含该时间点之前的所有可用数据。
In [51]: df = pd.DataFrame(range(5))
In [52]: df.rolling(window=len(df), min_periods=1).mean()
Out[52]:
0
0 0.0
1 0.5
2 1.0
3 1.5
4 2.0
In [53]: df.expanding(min_periods=1).mean()
Out[53]:
0
0 0.0
1 0.5
2 1.0
3 1.5
4 2.0
指数加权窗口
指数加权窗口与扩展窗口相似,但每个先验点相对于当前点均按指数加权。
加权计算的公式是这样的:
\(y_t=Σ^t_{i=0}{w_ix_{t-i}\over{Σ^t_{i=0}w_i}}\)
其中\(x_t\)是输入,\(y_t\)是输出,\(w_i\)是权重。
EW有两种模式,一种模式是 adjust=True
,这种情况下 \(??_??=(1???)^??\)
一种模式是 adjust=False
,这种情况下:
其中 0<??≤1, 根据EM方式的不同a可以有不同的取值:
举个例子:
In [54]: df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]})
In [55]: df
Out[55]:
B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0
In [56]: times = ["2020-01-01", "2020-01-03", "2020-01-10", "2020-01-15", "2020-01-17"]
In [57]: df.ewm(halflife="4 days", times=pd.DatetimeIndex(times)).mean()
Out[57]:
B
0 0.000000
1 0.585786
2 1.523889
3 1.523889
4 3.233686
本文已收录于 http://www.flydean.com/12-python-pandas-window/
最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!