最近公共祖先LCA Tarjan 离线算法

【简介】

解决LCA问题的Tarjan算法利用并查集在一次DFS(深度优先遍历)中完成所有询问。换句话说,要所有询问都读入后才开始计算,所以是一种离线的算法。

【原理】

先来看这样一个性质:当两个节点(u,v)的最近公共祖先是x时,那么我们可以确定的说,当进行后序遍历的时候,必然先访问完x的所有子树,其中包含u、v,然后才会返回到x所在的节点。这个性质就是我们使用Tarjan算法解决最近公共祖先问题的核心思想。

最近公共祖先LCA  Tarjan 离线算法

如上图所示,找出根节点到u得关键路径P ,已遍历的点位于路径P中某个点的子树中,当遍历到u时v已遍历过(u的子树已遍历完),那么v必然存在于子树pk中,此时LCA(u,v)就等于现在v所在集合的祖先pk。如果还没有遍历到,则继续遍历,只不过LCA(u,v)要等到遍历到v时才能知道了,原理如上。需要注意的一点是,为了保持上图的性质,如果一个节点的一个子树遍历完了,需要合并该节点的子树集合。

tarjan算法的步骤是(当dfs到节点u时):

(一) 在并查集中建立仅有u的集合,设置该集合的祖先为u
      (二) 对u的每个孩子v:
                  1. tarjan之
                  2. 合并v到父节点u的集合,确保集合的祖先是u
      (三)设置u为已遍历
      (四)处理关于u的查询,若查询(u,v)中的v已遍历过,则LCA(u,v)=  v所在的集合的祖先

【举例】

最近公共祖先LCA  Tarjan 离线算法

假设遍历完10的孩子,要处理关于10的请求了
取根节点到当前正在遍历的节点的路径为关键路径,即1-3-8-10
集合的祖先便是关键路径上距离集合最近的点
比如此时:
    【1,2,5,6】为一个集合,祖先为1,集合中点和10的LCA为1
    【3,7】为一个集合,祖先为3,集合中点和10的LCA为3
    【8,9,11】为一个集合,祖先为8,集合中点和10的LCA为8
    【10,12】为一个集合,祖先为10,集合中点和10的LCA为10

可以发现集合的祖先便是LCA !

【HDU 2586】

换成Tarjan 离线算法来做。

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <string.h>
#include <vector>
#include <cmath>
using namespace std;
int n,m;
struct edge
{
int d,v,next;
edge(){}
edge(int _d,int _v,int _next)
{
d=_d;v=_v;next=_next;
}
}data[];
int map[];
int pool;
void addedge(int s,int e,int v)
{
int t=map[s];
data[pool++]=edge(e,v,t);
map[s]=pool-;
}
int mset[];
int find(int k)
{
if (mset[k]==-) return k;
return mset[k]=find(mset[k]);
}
void uion(int a,int b)
{
int aa=find(a);
int bb=find(b);
mset[aa]=bb;
}
struct _que
{
int a,b;
_que(int q=,int w=){a=q;b=w;}
};
vector<vector<_que> > ques;
vector<int > ans;
int ifv[];
int dis[];
int anc[];
void tar(int cur)
{
ifv[cur]=;
anc[cur]=cur;
int p=map[cur];
while (p!=-)
{
if (!ifv[data[p].d])
{
dis[data[p].d]=dis[cur]+data[p].v;
tar(data[p].d);
uion(cur,data[p].d);
anc[find(cur)]=cur;
}
p=data[p].next;
}
ifv[cur]=;
for (int i=;i<(int)ques[cur].size();++i)
{
if (ifv[ques[cur][i].a]==)
ans[ques[cur][i].b]=dis[cur]+dis[ques[cur][i].a]-*dis[anc[find(ques[cur][i].a)]];
}
}
int main()
{
int T;
scanf("%d",&T);
while (T--)
{
ques.clear();
pool=;
memset(map,-,sizeof map);
memset(ifv,,sizeof ifv);
memset(mset,-,sizeof mset);
scanf("%d%d",&n,&m);
ques.resize(n);
int s,e,v;
for (int i=;i<n-;++i)
{
scanf("%d%d%d",&s,&e,&v);
addedge(s-,e-,v);
addedge(e-,s-,v);
}
dis[]=;
ans.resize(m);
for (int i=;i<m;++i)
{
int u,v;
scanf("%d%d",&u,&v);
--u;--v;
ques[u].push_back(_que(v,i));
ques[v].push_back(_que(u,i));
}
tar();
for (int i=;i<(int)ans.size();++i)
{
printf("%d\n",ans[i]);
}
}
}
上一篇:最近公共祖先 LCA Tarjan算法


下一篇:Photoshop 调出外景人物明亮的青红色