使用dtaidistance实现dtw算法(二)

使用dtaidistance实现dtw算法(二)

1、实现两两序列之间的距离计算

# DTW Distance Measures Between Set of Series 查看两两序列之间的距离
from dtaidistance import dtw
import numpy as np
# The distance_matrix method expects a list of lists/arrays: 数据格式
series = [
    np.array([0, 0, 1, 2, 1, 0, 1, 0, 0], dtype=np.double),
    np.array([0.0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0]),
    np.array([0.0, 0, 1, 2, 1, 0, 0, 0])]

 

dtw.distance_matrix_fast(series)

array([[0. , 1.41421356, 1. ],
[1.41421356, 0. , 1. ],
[1. , 1. , 0. ]])

两序列之间的距离矩阵,和相关系数矩阵的排列方式是一样的,(1,1)0第一个、第一个序列之间的距离,(2,1)1.41421356第一个、第二个序列之间的距离,(3,1)1第一个、第三个序列之间的距离,(3,2)1第二个、第三个序列之间的距离。

# or a matrix (in case all series have the same length): numpy格式
series = np.matrix([
    [0.0, 0, 1, 2, 1, 0, 1, 0, 0],
    [0.0, 1, 2, 0, 0, 0, 0, 0, 0],
    [0.0, 0, 1, 2, 1, 0, 0, 0, 0],
    [0.0, 0, 1, 2, 1, 0, 1, 0, 1] # 多加了一行
])
dtw.distance_matrix_fast(series)

array([[0. , 1.41421356, 1. , 1. ],
[1.41421356, 0. , 1. , 1.73205081],
[1. , 1. , 0. , 1.41421356],
[1. , 1.73205081, 1.41421356, 0. ]])
 

2、两两序列之间的对应

# 展示两两之间的对应关系
from dtaidistance import dtw
from dtaidistance import dtw_visualisation as dtwvis
import numpy as np
s1 = np.array([0., 0, 1, 2, 1, 0, 1, 0, 0, 2, 1, 0, 0])
s2 = np.array([0., 1, 2, 3, 1, 0, 0, 0, 2, 1, 0, 0, 0])
path = dtw.warping_path(s1, s2)
dtwvis.plot_warping(s1, s2, path, filename="warp.png")

使用dtaidistance实现dtw算法(二)
 

3、最佳路径

distance, paths = dtw.warping_paths(s1, s2
                                    #, window=25
                                    #, psi=2
                                   )
print(distance)
best_path = dtw.best_path(paths)# 最短路径
dtwvis.plot_warpingpaths(s1, s2, paths, best_path)# 制图

使用dtaidistance实现dtw算法(二)

上一篇:SpringCloudAlibaba学习笔记:OpenFeign客户端


下一篇:DTW 笔记: Dynamic Time Warping 动态时间规整 (&DTW的python实现)