HTAP数据库 PostgreSQL 场景与性能测试之 15 - (OLTP) 物联网 - 查询一个时序区间的数据

标签

PostgreSQL , HTAP , OLTP , OLAP , 场景与性能测试


背景

PostgreSQL是一个历史悠久的数据库,历史可以追溯到1973年,最早由2014计算机图灵奖得主,关系数据库的鼻祖Michael_Stonebraker 操刀设计,PostgreSQL具备与Oracle类似的功能、性能、架构以及稳定性。

HTAP数据库 PostgreSQL 场景与性能测试之 15 - (OLTP) 物联网 - 查询一个时序区间的数据

PostgreSQL社区的贡献者众多,来自全球各个行业,历经数年,PostgreSQL 每年发布一个大版本,以持久的生命力和稳定性著称。

2017年10月,PostgreSQL 推出10 版本,携带诸多惊天特性,目标是胜任OLAP和OLTP的HTAP混合场景的需求:

《最受开发者欢迎的HTAP数据库PostgreSQL 10特性》

1、多核并行增强

2、fdw 聚合下推

3、逻辑订阅

4、分区

5、金融级多副本

6、json、jsonb全文检索

7、还有插件化形式存在的特性,如 向量计算、JIT、SQL图计算、SQL流计算、分布式并行计算、时序处理、基因测序、化学分析、图像分析 等。

HTAP数据库 PostgreSQL 场景与性能测试之 15 - (OLTP) 物联网 - 查询一个时序区间的数据

在各种应用场景中都可以看到PostgreSQL的应用:

HTAP数据库 PostgreSQL 场景与性能测试之 15 - (OLTP) 物联网 - 查询一个时序区间的数据

PostgreSQL近年来的发展非常迅猛,从知名数据库评测网站dbranking的数据库评分趋势,可以看到PostgreSQL向上发展的趋势:

HTAP数据库 PostgreSQL 场景与性能测试之 15 - (OLTP) 物联网 - 查询一个时序区间的数据

从每年PostgreSQL中国召开的社区会议,也能看到同样的趋势,参与的公司越来越多,分享的公司越来越多,分享的主题越来越丰富,横跨了 传统企业、互联网、医疗、金融、国企、物流、电商、社交、车联网、共享XX、云、游戏、公共交通、航空、铁路、军工、培训、咨询服务等 行业。

接下来的一系列文章,将给大家介绍PostgreSQL的各种应用场景以及对应的性能指标。

环境

环境部署方法参考:

《PostgreSQL 10 + PostGIS + Sharding(pg_pathman) + MySQL(fdw外部表) on ECS 部署指南(适合新用户)》

阿里云 ECS:56核,224G,1.5TB*2 SSD云盘

操作系统:CentOS 7.4 x64

数据库版本:PostgreSQL 10

PS:ECS的CPU和IO性能相比物理机会打一定的折扣,可以按下降1倍性能来估算。跑物理主机可以按这里测试的性能乘以2来估算。

场景 - 物联网 - 查询一个时序区间的数据 (OLTP)

1、背景

在物联网、互联网、业务系统中都有时序数据,随着时间推移产生的数据。在时间维度或序列字段上呈现自增特性。

区间查询是一种按范围查询的业务需求。

PostgreSQL针对时序类型的数据,除了有传统的b-tree索引,还有一种块级索引BRIN,非常适合这种相关性很好的时序数据。这种索引在Oracle Exadata一体机上也有。而使用PostgreSQL可以免费享用这种高端特性。

2、设计

1亿条时序自增记录,按任意区间查询并输出 5万条记录

3、准备测试表

create table t_range(  
  id int,  
  ts timestamp default clock_timestamp()  
);  

4、准备测试函数(可选)

5、准备测试数据

insert into t_range(id) select generate_series(1,100000000);  

6、准备测试脚本

1、使用传统的b-tree索引

btree索引占用2142MB空间

create index idx_t_range_id on t_range using btree (id);  
  
postgres=# \di+ idx_t_range_id  
                              List of relations  
 Schema |      Name      | Type  |  Owner   |  Table  |  Size   | Description  
--------+----------------+-------+----------+---------+---------+-------------  
 public | idx_t_range_id | index | postgres | t_range | 2142 MB |  
(1 row)  

单次查询效率:

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_range where id between 1 and 50000;  
                                                                QUERY PLAN  
-------------------------------------------------------------------------------------------------------------------------------------------  
 Index Scan using idx_t_range_id on public.t_range  (cost=0.57..1527.31 rows=53167 width=12) (actual time=0.013..9.938 rows=50000 loops=1)  
   Output: id, ts  
   Index Cond: ((t_range.id >= 1) AND (t_range.id <= 50000))  
   Buffers: shared hit=411  
 Planning time: 0.060 ms  
 Execution time: 14.320 ms  
(6 rows)  
vi test.sql  
  
\set id random(1,90000000)  
\set mx :id+50000  
select * from t_range where id between :id and :mx;  

2、使用BRIN块级索引

BRIN索引仅占用256KB空间

drop index idx_t_range_id;  
create index idx_t_range_id on t_range using brin (id) with (pages_per_range=64);  
postgres=# \di+ idx_t_range_id  
                              List of relations  
 Schema |      Name      | Type  |  Owner   |  Table  |  Size  | Description  
--------+----------------+-------+----------+---------+--------+-------------  
 public | idx_t_range_id | index | postgres | t_range | 256 kB |  
(1 row)  

单次查询效率:

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_range where id between 1 and 50000;  
                                                          QUERY PLAN  
-------------------------------------------------------------------------------------------------------------------------------  
 Bitmap Heap Scan on public.t_range  (cost=43.31..52572.18 rows=38593 width=12) (actual time=1.497..9.807 rows=50000 loops=1)  
   Output: id, ts  
   Recheck Cond: ((t_range.id >= 1) AND (t_range.id <= 50000))  
   Rows Removed by Index Recheck: 9200  
   Heap Blocks: lossy=320  
   Buffers: shared hit=355  
   ->  Bitmap Index Scan on idx_t_range_id  (cost=0.00..33.66 rows=47360 width=0) (actual time=1.489..1.489 rows=3200 loops=1)  
         Index Cond: ((t_range.id >= 1) AND (t_range.id <= 50000))  
         Buffers: shared hit=35  
 Planning time: 0.036 ms  
 Execution time: 14.162 ms  
(11 rows)  

压测

vi test.sql  
  
\set id random(1,90000000)  
\set mx :id+50000  
select * from t_range where id between :id and :mx;  

7、测试

压测

CONNECTS=16  
TIMES=300  
export PGHOST=$PGDATA  
export PGPORT=1999  
export PGUSER=postgres  
export PGPASSWORD=postgres  
export PGDATABASE=postgres  
  
pgbench -M prepared -n -r -f ./test.sql -P 5 -c $CONNECTS -j $CONNECTS -T $TIMES  

8、测试结果

1、b-tree索引

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 16  
number of threads: 16  
duration: 300 s  
number of transactions actually processed: 188165  
latency average = 25.509 ms  
latency stddev = 4.625 ms  
tps = 627.166703 (including connections establishing)  
tps = 627.187145 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set id random(1,90000000)  
         0.000  \set mx :id+50000  
        25.507  select * from t_range where id between :id and :mx;  

2、brin索引

transaction type: ./test.sql  
scaling factor: 1  
query mode: prepared  
number of clients: 16  
number of threads: 16  
duration: 300 s  
number of transactions actually processed: 189889  
latency average = 25.278 ms  
latency stddev = 4.570 ms  
tps = 632.907768 (including connections establishing)  
tps = 632.927776 (excluding connections establishing)  
script statistics:  
 - statement latencies in milliseconds:  
         0.002  \set id random(1,90000000)  
         0.000  \set mx :id+50000  
        25.276  select * from t_range where id between :id and :mx;  

TPS

1、b-tree索引

627  
  
相当于每秒返回3135万行记录。  

2、brin索引

632  
  
相当于每秒返回3160万行记录。  

平均响应时间

1、b-tree索引

25.509 毫秒  

2、brin索引

25.278 毫秒  

参考

《PostgreSQL、Greenplum 应用案例宝典《如来神掌》 - 目录》

《数据库选型之 - 大象十八摸 - 致 架构师、开发者》

《PostgreSQL 使用 pgbench 测试 sysbench 相关case》

《数据库界的华山论剑 tpc.org》

https://www.postgresql.org/docs/10/static/pgbench.html

上一篇:信息安全*技能:低调


下一篇:使用过滤统计信息解决基数预估错误