MapReduce数据清洗

Result文件数据说明:

Ip:106.39.41.166,(城市)

Date:10/Nov/2016:00:01:02 +0800,(日期)

Day:10,(天数)

Traffic: 54 ,(流量)

Type: video,(类型:视频video或文章article)

Id: 8701(视频或者文章的id)

测试要求:

2、数据处理:

·统计最受欢迎的视频/文章的Top10访问次数 (video/article)

·按照地市统计最受欢迎的Top10课程 (ip)

·按照流量统计最受欢迎的Top10课程 (traffic)

1、

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 package test4;   import java.io.IOException;        import org.apache.hadoop.conf.Configuration;   import org.apache.hadoop.fs.Path;   import org.apache.hadoop.io.IntWritable;   import org.apache.hadoop.io.Text;   import org.apache.hadoop.io.WritableComparable;   import org.apache.hadoop.mapreduce.Job;   import org.apache.hadoop.mapreduce.Mapper;   import org.apache.hadoop.mapreduce.Reducer;   import org.apache.hadoop.mapreduce.Reducer.Context;   import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;   import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;   import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;   import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;   public class quchong {   public static void main(String[] args) throws IOException,ClassNotFoundException,InterruptedException {   Job job = Job.getInstance();   job.setJobName("paixu");   job.setJarByClass(quchong.class);   job.setMapperClass(doMapper.class);   job.setReducerClass(doReducer.class);   job.setOutputKeyClass(Text.class);   job.setOutputValueClass(IntWritable.class);   Path in new Path("hdfs://localhost:9000/test/in/result");   Path out new Path("hdfs://localhost:9000/test/stage3/out1");   FileInputFormat.addInputPath(job,in);   FileOutputFormat.setOutputPath(job,out);   ////   if(job.waitForCompletion(true)){   Job job2 = Job.getInstance();   job2.setJobName("paixu");           job2.setJarByClass(quchong.class);            job2.setMapperClass(doMapper2.class);            job2.setReducerClass(doReduce2.class);            job2.setOutputKeyClass(IntWritable.class);            job2.setOutputValueClass(Text.class);            job2.setSortComparatorClass(IntWritableDecreasingComparator.class);           job2.setInputFormatClass(TextInputFormat.class);            job2.setOutputFormatClass(TextOutputFormat.class);            Path in2=new Path("hdfs://localhost:9000/test/stage3/out1/part-r-00000");            Path out2=new Path("hdfs://localhost:9000/test/stage3/out2");           FileInputFormat.addInputPath(job2,in2);            FileOutputFormat.setOutputPath(job2,out2);    System.exit(job2.waitForCompletion(true) ? 0 : 1);   }   }   public static class doMapper extends Mapper<Object,Text,Text,IntWritable>{   public static final IntWritable one = new IntWritable(1);   public static Text word = new Text();   @Override   protected void map(Object key, Text value, Context context)   throws IOException,InterruptedException {   //StringTokenizer tokenizer = new StringTokenizer(value.toString(),"  ");      String[] strNlist = value.toString().split(",");     // String str=strNlist[3].trim();      String str2=strNlist[4]+strNlist[5];   // Integer temp= Integer.valueOf(str);   word.set(str2);   //IntWritable abc = new IntWritable(temp);   context.write(word,one);   }   }   public static class doReducer extends Reducer<Text,IntWritable,Text,IntWritable>{   private IntWritable result = new IntWritable();   @Override   protected void reduce(Text key,Iterable<IntWritable> values,Context context)   throws IOException,InterruptedException{   int sum = 0;   for (IntWritable value : values){   sum += value.get();   }   result.set(sum);   context.write(key,result);   }   }   /////////////////   public static class doMapper2 extends Mapper<Object , Text , IntWritable,Text>{   private static Text goods=new Text();        private static IntWritable num=new IntWritable();    @Override   protected void map(Object key, Text value, Context context)   throws IOException,InterruptedException {    String line=value.toString();        String arr[]=line.split(" ");       num.set(Integer.parseInt(arr[1]));        goods.set(arr[0]);       context.write(num,goods);   }   }   public static class doReduce2 extends Reducer< IntWritable, Text, IntWritable, Text>{        private static IntWritable result= new IntWritable();        int i=0;       public void reduce(IntWritable key,Iterable<Text> values,Context context) throws IOException, InterruptedException{            for(Text val:values){            if(i<10)            {               context.write(key,val);            i++;            }                      }           }    private static class IntWritableDecreasingComparator extends IntWritable.Comparator {             public int compare(WritableComparable a, WritableComparable b) {            return -super.compare(a, b);         }        public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {                   return -super.compare(b1, s1, l1, b2, s2, l2);          }   }   }

  

  MapReduce数据清洗(去重,并输出访问次数)

MapReduce数据清洗(排序,输出Top10)

2、

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 package test3;        import java.io.IOException;        import org.apache.hadoop.fs.Path;   import org.apache.hadoop.io.IntWritable;   import org.apache.hadoop.io.Text;   import org.apache.hadoop.io.WritableComparable;   import org.apache.hadoop.mapreduce.Job;   import org.apache.hadoop.mapreduce.Mapper;   import org.apache.hadoop.mapreduce.Reducer;   import org.apache.hadoop.mapreduce.Reducer.Context;   import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;   import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;   import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;   import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;   import test4.quchong.doMapper2;   import test4.quchong.doReduce2;   public class quchong {   public static void main(String[] args) throws IOException,ClassNotFoundException,InterruptedException {   Job job = Job.getInstance();   job.setJobName("paixu");   job.setJarByClass(quchong.class);   job.setMapperClass(doMapper.class);   job.setReducerClass(doReducer.class);   job.setOutputKeyClass(Text.class);   job.setOutputValueClass(IntWritable.class);   Path in new Path("hdfs://localhost:9000/test/in/result");   Path out new Path("hdfs://localhost:9000/test/stage2/out1");   FileInputFormat.addInputPath(job,in);   FileOutputFormat.setOutputPath(job,out);   if(job.waitForCompletion(true)){   Job job2 = Job.getInstance();   job2.setJobName("paixu");           job2.setJarByClass(quchong.class);            job2.setMapperClass(doMapper2.class);            job2.setReducerClass(doReduce2.class);            job2.setOutputKeyClass(IntWritable.class);            job2.setOutputValueClass(Text.class);            job2.setSortComparatorClass(IntWritableDecreasingComparator.class);           job2.setInputFormatClass(TextInputFormat.class);            job2.setOutputFormatClass(TextOutputFormat.class);            Path in2=new Path("hdfs://localhost:9000/test/stage2/out1/part-r-00000");            Path out2=new Path("hdfs://localhost:9000/test/stage2/out2");           FileInputFormat.addInputPath(job2,in2);            FileOutputFormat.setOutputPath(job2,out2);    System.exit(job2.waitForCompletion(true) ? 0 : 1);   }   }   public static class doMapper extends Mapper<Object,Text,Text,IntWritable>{   public static final IntWritable one = new IntWritable(1);   public static Text word = new Text();   @Override   protected void map(Object key, Text value, Context context)   throws IOException,InterruptedException {   //StringTokenizer tokenizer = new StringTokenizer(value.toString(),"  ");      String[] strNlist = value.toString().split(",");     // String str=strNlist[3].trim();      String str2=strNlist[0];   // Integer temp= Integer.valueOf(str);   word.set(str2);   //IntWritable abc = new IntWritable(temp);   context.write(word,one);   }   }   public static class doReducer extends Reducer<Text,IntWritable,Text,IntWritable>{   private IntWritable result = new IntWritable();   @Override   protected void reduce(Text key,Iterable<IntWritable> values,Context context)   throws IOException,InterruptedException{   int sum = 0;   for (IntWritable value : values){   sum += value.get();   }   result.set(sum);   context.write(key,result);   }   }   ////////////////   public static class doMapper2 extends Mapper<Object , Text , IntWritable,Text>{   private static Text goods=new Text();        private static IntWritable num=new IntWritable();    @Override   protected void map(Object key, Text value, Context context)   throws IOException,InterruptedException {    String line=value.toString();        String arr[]=line.split(" ");       num.set(Integer.parseInt(arr[1]));        goods.set(arr[0]);       context.write(num,goods);   }   }   public static class doReduce2 extends Reducer< IntWritable, Text, IntWritable, Text>{        private static IntWritable result= new IntWritable();        int i=0;       public void reduce(IntWritable key,Iterable<Text> values,Context context) throws IOException, InterruptedException{            for(Text val:values){            if(i<10)            {               context.write(key,val);            i++;            }                      }           }    private static class IntWritableDecreasingComparator extends IntWritable.Comparator {             public int compare(WritableComparable a, WritableComparable b) {            return -super.compare(a, b);         }        public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {                   return -super.compare(b1, s1, l1, b2, s2, l2);          }   }   }

  

  MapReduce数据清洗(去重,显示ip次数)

MapReduce数据清洗(排序,输出Top10)

3、

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 package test2;        import java.io.IOException;   import java.text.SimpleDateFormat;   import java.util.Date;   import java.util.Locale;   import java.util.StringTokenizer;   import org.apache.hadoop.conf.Configuration;   import org.apache.hadoop.fs.Path;   import org.apache.hadoop.io.IntWritable;   import org.apache.hadoop.io.LongWritable;   import org.apache.hadoop.io.Text;   import org.apache.hadoop.io.WritableComparable;   import org.apache.hadoop.mapreduce.Job;   import org.apache.hadoop.mapreduce.Mapper;   import org.apache.hadoop.mapreduce.Reducer;   import org.apache.hadoop.mapreduce.Reducer.Context;   import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;   import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;   import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;   import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;        import test3.quchong;   import test3.quchong.doMapper2;   import test3.quchong.doReduce2;   public class paixu {   public static void main(String[] args) throws IOException,ClassNotFoundException,InterruptedException {   Job job = Job.getInstance();   job.setJobName("paixu");   job.setJarByClass(paixu.class);   job.setMapperClass(doMapper.class);   job.setReducerClass(doReducer.class);   job.setOutputKeyClass(Text.class);   job.setOutputValueClass(IntWritable.class);   Path in new Path("hdfs://localhost:9000/test/in/result");   Path out new Path("hdfs://localhost:9000/test/stage1/out1");   FileInputFormat.addInputPath(job,in);   FileOutputFormat.setOutputPath(job,out);   if(job.waitForCompletion(true)){   Job job2 = Job.getInstance();   job2.setJobName("paixu");           job2.setJarByClass(quchong.class);            job2.setMapperClass(doMapper2.class);            job2.setReducerClass(doReduce2.class);            job2.setOutputKeyClass(IntWritable.class);            job2.setOutputValueClass(Text.class);            job2.setSortComparatorClass(IntWritableDecreasingComparator.class);           job2.setInputFormatClass(TextInputFormat.class);            job2.setOutputFormatClass(TextOutputFormat.class);            Path in2=new Path("hdfs://localhost:9000/test/stage1/out1/part-r-00000");            Path out2=new Path("hdfs://localhost:9000/test/stage1/out2");           FileInputFormat.addInputPath(job2,in2);            FileOutputFormat.setOutputPath(job2,out2);    System.exit(job2.waitForCompletion(true) ? 0 : 1);   }   }   public static class doMapper extends Mapper<Object,Text,Text,IntWritable>{   public static final IntWritable one = new IntWritable(1);   public static Text word = new Text();   @Override   protected void map(Object key, Text value, Context context)   throws IOException,InterruptedException {   //StringTokenizer tokenizer = new StringTokenizer(value.toString(),"  ");      String[] strNlist = value.toString().split(",");      String str=strNlist[3].trim();      String str2=strNlist[4]+strNlist[5];    Integer temp= Integer.valueOf(str);   word.set(str2);   IntWritable abc = new IntWritable(temp);   context.write(word,abc);   }   }   public static class doReducer extends Reducer<Text,IntWritable,Text,IntWritable>{   private IntWritable result = new IntWritable();   @Override   protected void reduce(Text key,Iterable<IntWritable> values,Context context)   throws IOException,InterruptedException{   int sum = 0;   for (IntWritable value : values){   sum += value.get();   }   result.set(sum);   context.write(key,result);   }   }   /////////////   public static class doMapper2 extends Mapper<Object , Text , IntWritable,Text>{   private static Text goods=new Text();        private static IntWritable num=new IntWritable();    @Override   protected void map(Object key, Text value, Context context)   throws IOException,InterruptedException {    String line=value.toString();        String arr[]=line.split(" ");       num.set(Integer.parseInt(arr[1]));        goods.set(arr[0]);       context.write(num,goods);   }   }   public static class doReduce2 extends Reducer< IntWritable, Text, IntWritable, Text>{        private static IntWritable result= new IntWritable();        int i=0;       public void reduce(IntWritable key,Iterable<Text> values,Context context) throws IOException, InterruptedException{            for(Text val:values){            if(i<10)            {               context.write(key,val);            i++;            }                      }           }    private static class IntWritableDecreasingComparator extends IntWritable.Comparator {             public int compare(WritableComparable a, WritableComparable b) {            return -super.compare(a, b);         }        public int compare(byte[] b1, int s1, int l1, byte[] b2, int s2, int l2) {                   return -super.compare(b1, s1, l1, b2, s2, l2);          }   }   }

  

  MapReduce数据清洗(去重、显示流量总量)

MapReduce数据清洗(排序,输出Top10)

 

总结:

本来我是通过两个类来实现的,后来我发现在一个类中可以进行多个job,我就定义两个job,job1进行去重,输出总数。job2进行排序,输出Top10。

在for(Intwritable val:values)遍历时,根据主键升序遍历,但我们需要的结果是降序,那么在这里我们需要引入一个比较器。

 MapReduce数据清洗

 

上一篇:MR框架-->Word3


下一篇:Photoshop绘制网络游戏男战士