传送门
给定长度为
N
N
N的数组,表示营业额
一
天
的
最
小
波
动
值
=
min
{
∣
该天以前某一天的营业额
−
该天营业额
∣
}
一天的最小波动值 = \min\{|\text{该天以前某一天的营业额}-\text{该天营业额}|\}
一天的最小波动值=min{∣该天以前某一天的营业额−该天营业额∣}
求每一天的营业额
第一天为它本身
分析
假设当前的营业额为
x
x
x,我们要知道以前的,小于
x
x
x的最大值,大于
x
x
x的最小值
这就是前驱和后继了
所以我们要动态维护前驱后继
注意,非严格前驱后继!可以等于,所以做些小变化。
详细看
f
i
n
d
_
p
r
e
,
f
i
n
d
_
n
x
t
find\_pre,find\_nxt
find_pre,find_nxt的那个“=”号
行! 那就用
S
p
l
a
y
Splay
Splay了
代码
//P2234
/*
@Author: YooQ
*/
#include <bits/stdc++.h>
using namespace std;
#define sc scanf
#define pr printf
#define ll long long
#define FILE_OUT freopen("out", "w", stdout);
#define FILE_IN freopen("in", "r", stdin);
#define debug(x) cout << #x << ": " << x << "\n";
#define AC 0
#define WA 1
#define INF 0x3f3f3f3f
const ll MAX_N = 1e6+5;
const ll MOD = 1e9+7;
int N, M, K;
struct Tr {
int k, cnt, sz, fa;
int son[2];
int& l = son[0];
int& r = son[1];
}tr[MAX_N];
int root = 0;
int indx = 0;
void push_up(int rt) {
tr[rt].sz = tr[tr[rt].l].sz + tr[tr[rt].r].sz + tr[rt].cnt;
}
int which(int x) {
return tr[tr[x].fa].son[1] == x;
}
void rotate(int x) {
int p = tr[x].fa;
int q = tr[p].fa;
int side = which(x);
tr[tr[p].son[side] = tr[x].son[side^1]].fa = p;
tr[tr[x].son[side^1] = p].fa = x;
tr[x].fa = q;
if (q) {
tr[q].son[tr[q].son[1] == p] = x;
}
push_up(p);
push_up(x);
}
void splay(int x, int tar) {
for (int p; (p = tr[x].fa) != tar; rotate(x)) {
if (tr[p].fa != tar) rotate(which(x) == which(p) ? p : x);
}
if (!tar) root = x;
}
int find(int x) {
int rt = root;
while (tr[rt].son[x > tr[rt].k] && x != tr[rt].k) {
rt = tr[rt].son[x > tr[rt].k];
}
splay(rt, 0);
return rt;
}
int find_pre(int x) {
int rt = find(x);
if (tr[rt].k <= x) return rt;
rt = tr[rt].l;
while (tr[rt].r) {
rt = tr[rt].r;
}
return rt;
}
int find_nxt(int x) {
int rt = find(x);
if (tr[rt].k >= x) return rt;
rt = tr[rt].r;
while (tr[rt].l) {
rt = tr[rt].l;
}
return rt;
}
void insert(int x) {
int rt = root, pre = 0;
while (rt && x != tr[rt].k) {
pre = rt;
rt = tr[rt].son[x > tr[rt].k];
}
if (rt) {
++tr[rt].cnt;
splay(rt, 0);
return;
}
rt = ++indx;
tr[rt].fa = pre;
tr[rt].k = x;
tr[rt].sz = tr[rt].cnt = 1;
if (pre) tr[pre].son[x > tr[pre].k] = rt;
splay(rt, 0);
}
void solve(){
sc("%d", &N);
int ans = 0;
insert(-1e9);
insert(1e9);
int x;
for (int i = 1; i <= N; ++i) {
sc("%d", &x);
if (i == 1) ans += x;
else ans += min(abs(x - tr[find_pre(x)].k), abs(x - tr[find_nxt(x)].k));
insert(x);
}
pr("%d\n", ans);
}
signed main()
{
#ifndef ONLINE_JUDGE
//FILE_IN
FILE_OUT
#endif
int T = 1;//cin >> T;
while (T--) solve();
return AC;
}