Elastisearch-介绍及安装
全文搜索属于最常见的需求,开源的 Elasticsearch (以下简称 ES)是目前全文搜索引擎的首选。它可以快速地储存、搜索和分析海量数据。
ES 的底层是开源库 Lucene。ES是一个基于Lucene的搜索服务器。它提供了一个分布式的全文搜索引擎,基于restful web接口。ES是用Java语言开发的,基于Apache协议的开源项目,是目前最受欢迎的企业搜索引擎。ES广泛运用于云计算中,能够达到实时搜索,具有稳定,可靠,快速的特点。
文档
中文文档 :基于2.3版本,部分内容已经过时
官方文档 :详细信息以官方文档为准
相关概念
-
Index(索引):索引是一些具有相似特征的文档集合,类似于MySql中数据库的概念。
-
Type(类型) :类型是索引的逻辑类别分区,通常,为具有一组公共字段的文档类型,类似MySql中表的概念。
注意
:在Elasticsearch 6.0.0及更高的版本中,Type类型被移除,一个索引只能包含一个类型。原因:
1 、在关系型数据库中table是独立的(独立存储),但es中同一个index中不同type是存储在同一个索引中的(lucene的索引文件),因此不同type中相同名字的字段的定义(mapping)必须一致。
2、不同类型的“记录”存储在同一个index中,会影响lucene的压缩性能。
ES 7:URL中的type参数为可选,比如,索引一个文档不在要求提供文档类型
ES 8:不再支持URL中的Type参数
迁移解决方式:将索引从多类型迁移到单类型,每种类型文档一个独立索引
-
Document(文档):文档是可被索引的基本信息单位,以JSON形式表示,类似于MySql中行记录的概念。
-
Shards(分片):当索引存储大量数据时,可能会超出单个节点的硬件限制,为了解决这个问题,Elasticsearch提供了将索引细分为分片的概念。分片机制赋予了索引水平扩容的能力、并允许跨分片分发和并行化操作,从而提高性能和吞吐量。
-
Replicas(副本):在可能出现故障的网络环境中,需要有一个故障切换机制,Elasticsearch提供了将索引的分片复制为一个或多个副本的功能,副本在某些节点失效的情况下提供高可用性。
-
Cluster(集群):群集是一个或多个节点的集合,它们一起保存整个数据,并提供跨所有节点的联合索引和搜索功能。每个群集都有自己的唯一群集名称,节点通过名称加入群集。
-
Node(节点):节点是指属于集群的单个Elasticsearch实例,存储数据并参与集群的索引和搜索功能。可以将节点配置为按集群名称加入特定集群,默认情况下,每个节点都设置为加入一个名为elasticsearch的群集。
倒排索引:参考地址
Docker安装Elasticsearch、Kibana
1. 下载镜像文件
# 存储和检索数据
docker pull elasticsearch:7.4.2
# 可视化检索数据
docker pull kibana:7.4.2
2. 配置挂载数据文件夹
# 创建配置文件目录
mkdir -p /mydata/elasticsearch/config
# 创建数据目录
mkdir -p /mydata/elasticsearch/data
# 将/mydata/elasticsearch/文件夹中文件都可读可写
chmod -R 777 /mydata/elasticsearch/
# 配置任意机器可以访问 elasticsearch
echo "http.host: 0.0.0.0" >/mydata/elasticsearch/config/elasticsearch.yml
3. 启动Elasticsearch
命令后面的 \是换行符,注意前面有空格
docker run --name elasticsearch -p 9200:9200 -p 9300:9300 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms64m -Xmx512m" \
-v /mydata/elasticsearch/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml \
-v /mydata/elasticsearch/data:/usr/share/elasticsearch/data \
-v /mydata/elasticsearch/plugins:/usr/share/elasticsearch/plugins \
-d elasticsearch:7.4.2
-
p 9200:9200 -p 9300:9300
:向外暴露两个端口,9200用于HTTP REST API请求,9300 ES 在分布式集群状态下 ES 之间的通信端口; -
e "discovery.type=single-node"
:es 以单节点运行 -
e ES_JAVA_OPTS="-Xms64m -Xmx512m"
:设置启动占用内存,不设置可能会占用当前系统所有内存 - v:挂载容器中的配置文件、数据文件、插件数据到本机的文件夹;
-
d elasticsearch:7.6.2
:指定要启动的镜像
访问 IP:9200 看到返回的 json 数据说明启动成功。
4. 设置 Elasticsearch 随Docker启动
# 当前 Docker 开机自启,所以 ES 现在也是开机自启
docker update elasticsearch --restart=always
5. 启动可视化Kibana
docker run --name kibana \
-e ELASTICSEARCH_HOSTS=http://120.25.165.166:9200 \
-p 5601:5601 \
-d kibana:7.4.2
-
ELASTICSEARCH_HOSTS=http://120.25.165.166:9200
: 这里要设置成自己的虚拟机IP地址
浏览器输入120.25.165.166:5601 测试:
6. 设置 Kibana 随Docker启动
# 当前 Docker 开机自启,所以 kibana 现在也是开机自启
docker update kibana --restart=always
Elasticsearch-使用入门
Elasticsearch 都是通过 REST API 接口来操作数据的,那么下面接通过几个接口的请求来演示它的使用。(当前虚拟机IP为120.25.165.167)
集群状态查看_cat
- /_cat/nodes:查看所有节点
接口:GET http://120.25.165.167:9200/_cat/nodes
- /_cat/health:查看ES健康状况
接口:GET http://120.25.165.167:9200/_cat/health
- /_cat/master:查看主节点信息
接口:GET http://120.25.165.167:9200/_cat/master
- /_cat/indicies:查看所有索引
接口:GET http://120.25.165.167:9200/_cat/indices
索引(新增)一个文档
即保存一条数据,保存在哪个索引的哪个类型下,指定用哪个唯一标识。
PUT 请求
接口:PUT http://120.25.165.167:9200/customer/external/1
POST 请求
接口:POST http://120.25.165.167:9200/customer/external/
PUT和POST都可以
- POST新增,如果不指定id,会自动生成id。指定id就会修改这个数据,并新增版本号;
- PUT可以新增也可以修改。PUT必须指定id;由于PUT需要指定id,我们一般用来做修改操作,不指定id会报错。
查看文档
/index/type/id
接口:GET http://120.25.165.167:9200/customer/external/1
**字段解释:**
{
"_index": "customer", # 在哪个索引(库)
"_type": "external", # 在哪个类型(表)
"_id": "1", # 文档id(记录)
"_version": 5, # 版本号
"_seq_no": 4, # 并发控制字段,每次更新都会+1,用来做乐观锁
"_primary_term": 1, # 同上,主分片重新分配,如重启,就会变化
"found": true,
"_source": { # 数据
"name": "zhangsan"
}
}
# 乐观锁更新时携带 ?_seq_no=0&_primary_term=1 当携带数据与实际值不匹配时更新失败
更新文档
/index/type/id/_update
接口:POST http://120.25.165.167:9200/customer/external/1/_update
几种更新文档的区别
在上面索引文档即保存文档的时候介绍,还有两种更新文档的方式:
- 当PUT请求带id,且有该id数据存在时,会更新文档;
- 当POST请求带id,与PUT相同,该id数据已经存在时,会更新文档;
这两种请求类似,即带id,且数据存在,就会执行更新操作。
类比:
- 请求体的报文格式不同,_update方式要修改的数据要包裹在 doc 键下
- _update方式不会重复更新,数据已存在不会更新,版本号不会改变,另两种方式会重复更新(覆盖原来数据),版本号会改变
- 这几种方式在更新时都可以增加属性,PUT请求带id更新和POST请求带id更新,会直接覆盖原来的数据,不会在原来的属性里面新增属性
删除文档&索引
删除文档
接口:DELETE http://120.25.165.167:9200/customer/external/1
删除索引
接口:DELETE http://120.25.165.167:9200/customer
批量操作数据-bulk
语法格式:
{action:{metadata}}\n // 例如index保存记录,update更新
{request body }\n
{action:{metadata}}\n
{request body }\n
指定索引和类型的批量操作
接口:POST /customer/external/_bulk
参数:
{"index":{"_id":"1"}}
{"name":"John Doe"}
{"index":{"_id":"2"}}
{"name":"John Doe"}
在Kibana中使用dev-tools测试批量:
对所有索引执行批量操作
接口:POST /_bulk
参数:
{"delete":{"_index":"website","_type":"blog","_id":"123"}}
{"create":{"_index":"website","_type":"blog","_id":"123"}}
{"title":"my first blog post"}
{"index":{"_index":"website","_type":"blog"}}
{"title":"my second blog post"}
{"update":{"_index":"website","_type":"blog","_id":"123"}}
{"doc":{"title":"my updated blog post"}}
- 这里的批量操作,当发生某一条执行发生失败时,其他的数据仍然能够接着执行,也就是说彼此之间是独立的。
- bulk api以此按顺序执行所有的action(动作)。如果一个单个的动作因任何原因失败,它将继续处理它后面剩余的动作。
- 当bulk api返回时,它将提供每个动作的状态(与发送的顺序相同),所以您可以检查是否一个指定的动作是否失败了。
Elasticsearch-检索进阶
导入样本测试数据
准备一份顾客银行账户信息的虚构的JSON文档样本。每个文档都有下列的 schema(模式)。
{
"account_number": 1,
"balance": 39225,
"firstname": "Amber",
"lastname": "Duke",
"age": 32,
"gender": "M",
"address": "880 Holmes Lane",
"employer": "Pyrami",
"email": "amberduke@pyrami.com",
"city": "Brogan",
"state": "IL"
}
https://raw.githubusercontent.com/elastic/elasticsearch/master/docs/src/test/resources/accounts.json
访问失败可请求:镜像地址 。导入测试数据。
POST bank/account/_bulk
POST /bank/account/_bulk
{
"index": {
"_id": "1"
}
}
{
"account_number": 1,
"balance": 39225,
"firstname": "Amber",
"lastname": "Duke",
"age": 32,
"gender": "M",
"address": "880 Holmes Lane",
"employer": "Pyrami",
"email": "amberduke@pyrami.com",
"city": "Brogan",
"state": "IL"
}
......省略若干条数据
检索示例介绍
下面的请求都是在Kibana dev-tools 操作
最简单的搜索,使用match_all
来表示,例如搜索全部,请求接口:
GET /bank/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"account_number": "asc"
}
]
}
# query 查询条件
# sort 排序条件
结果
{
"took" : 7,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1000,
"relation" : "eq"
},
"max_score" : null,
"hits" : [
{
"_index" : "bank",
"_type" : "account",
"_id" : "0",
"_score" : null,
"_source" : {
"account_number" : 0,
"balance" : 16623,
"firstname" : "Bradshaw",
"lastname" : "Mckenzie",
"age" : 29,
"gender" : "F",
"address" : "244 Columbus Place",
"employer" : "Euron",
"email" : "bradshawmckenzie@euron.com",
"city" : "Hobucken",
"state" : "CO"
},
"sort" : [
0
]
},
...
]
}
}
响应字段解释
-
took
– Elasticsearch运行查询需要多长时间,以毫秒为单位 -
timed_out
– 搜索请求是否超时 -
_shards
– 搜索了多少个分片,以及成功、失败或跳过了多少个分片。 -
max_score
– 将得分最高的相关文件找到 -
hits.total.value
- 找到了多少匹配的文档 -
hits.sort
- 文档的排序位置(当不按相关分数排序时) -
hits._score
-文档的相关分数(在使用match_all
时不适用)
响应结果说明
Elasticsearch 默认会分页返回10条数据,不会一下返回所有数据。
请求方式说明
ES支持两种基本方式检索;
- 通过REST request uri 发送搜索参数 (uri +检索参数);
- 通过REST request body 来发送它们(uri+请求体);
也就是说除了上面示例的请求接口,根据请求体进行检索外;
还可以用GET请求参数的方式检索:
GET bank/_search?q=*&sort=account_number:asc
# q=* 查询所有
# sort=account_number:asc 按照account_number进行升序排列
Query DSL
本小节参考官方文档:Query DSL
Elasticsearch提供了一个可以执行查询的Json风格的DSL。这个被称为Query DSL,该查询语言非常全面。Elasticsearch使用它可以以简单的JSON接口来实现丰富的搜索功能,下面的搜索操作都将使用它:
1. 基本语法格式
一个查询语句的典型结构:
QUERY_NAME:{
ARGUMENT:VALUE,
ARGUMENT:VALUE,...
}
如果针对于某个字段,那么它的结构如下:
{
QUERY_NAME:{
FIELD_NAME:{
ARGUMENT:VALUE,
ARGUMENT:VALUE,...
}
}
}
请求示例:
GET bank/_search
{
"query": {
"match_all": {}
},
"from": 0,
"size": 5,
"sort": [
{
"account_number": {
"order": "desc"
},
"balance": {
"order": "asc"
}
}
]
}
# match_all 查询类型【代表查询所有的所有】,es中可以在query中组合非常多的查询类型完成复杂查询;
# from+size 限定,完成分页功能;从第几条数据开始,每页有多少数据
# sort 排序,多字段排序,会在前序字段相等时后续字段内部排序,否则以前序为准;
2. 返回部分字段
请求示例:
GET bank/_search
{
"query": {
"match_all": {}
},
"from": 0,
"size": 5,
"sort": [
{
"account_number": {
"order": "desc"
}
}
],
"_source": ["balance","firstname"]
}
# _source 指定返回结果中包含的字段名
结果示例:
{
"took" : 2,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1000,
"relation" : "eq"
},
"max_score" : null,
"hits" : [
{
"_index" : "bank",
"_type" : "account",
"_id" : "999",
"_score" : null,
"_source" : {
"firstname" : "Dorothy",
"balance" : 6087
},
"sort" : [
999
]
},
...
]
}
}
3. match-匹配查询
精确查询-基本数据类型(非文本)
GET bank/_search
{
"query": {
"match": {
"account_number": 20
}
}
}
# 查找匹配 account_number 为 20 的数据 非文本推荐使用 term
模糊查询-文本字符串
GET bank/_search
{
"query": {
"match": {
"address": "mill lane"
}
}
}
# 查找匹配 address 包含 mill 或 lane 的数据
match即全文检索,对检索字段进行分词匹配,会按照响应的评分 _score 排序,原理是倒排索引。
精确匹配-文本字符串
GET bank/_search
{
"query": {
"match": {
"address.keyword": "288 Mill Street"
}
}
}
# 查找 address 为 288 Mill Street 的数据。
# 这里的查找是精确查找,只有完全匹配时才会查找出存在的记录,
# 如果想模糊查询应该使用match_phrase 短语匹配
4. match_phrase-短语匹配
将需要匹配的值当成一整个单词(不分词)进行检索
GET bank/_search
{
"query": {
"match_phrase": {
"address": "mill lane"
}
}
}
# 这里会检索 address 匹配包含短语 mill lane 的数据
5. multi_math-多字段匹配
GET bank/_search
{
"query": {
"multi_match": {
"query": "mill",
"fields": [
"city",
"address"
]
}
}
}
# 检索 city 或 address 匹配包含 mill 的数据,会对查询条件分词
6. bool-复合查询
复合语句可以合并,任何其他查询语句,包括符合语句。这也就意味着,复合语句之间
可以互相嵌套,可以表达非常复杂的逻辑。
- must:必须达到must所列举的所有条件
- must_not,必须不匹配must_not所列举的所有条件。
- should,满足should所列举的条件其中一个即可(类似MYSQL中的or)。
GET bank/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"gender": "M"
}
},
{
"match": {
"address": "mill"
}
}
]
}
}
}
# 查询 gender 为 M 且 address 包含 mill 的数据
7. filter-结果过滤
并不是所有的查询都需要产生分数,特别是哪些仅用于filtering过滤的文档。为了不计算分数,elasticsearch会自动检查场景并且优化查询的执行。
filter 对结果进行过滤,且不计算相关性得分。
GET bank/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"address": "mill"
}
}
],
"filter": {
"range": {
"balance": {
"gte": "10000",
"lte": "20000"
}
}
}
}
}
}
# 这里先是查询所有匹配 address 包含 mill 的文档,
# 然后再根据 10000<=balance<=20000 进行过滤查询结果
在boolean查询中,must
, should
和must_not
元素都被称为查询子句 。 文档是否符合每个“must”或“should”子句中的标准,决定了文档的“相关性得分”。 得分越高,文档越符合您的搜索条件。 默认情况下,Elasticsearch 返回根据这些相关性得分排序的文档。
“must_not”子句中的条件被视为“过滤器”。
它影响文档是否包含在结果中,但不影响文档的评分方式。还可以显式地指定任意过滤器来包含或排除基于结构化数据的文档。
8. term-精确检索
避免使用 term 查询文本字段
默认情况下,Elasticsearch 会通过analysis分词将文本字段的值拆分为一部分,这使精确匹配文本字段的值变得困难。
如果要查询文本字段值,请使用 match 查询代替。
https://www.elastic.co/guide/en/elasticsearch/reference/7.11/query-dsl-term-query.html
在上面3.match-匹配查询中有介绍对于非文本字段的精确查询,Elasticsearch 官方对于这种非文本字段,使用 term来精确检索是一个推荐的选择。
GET bank/_search
{
"query": {
"term": {
"age": "28"
}
}
}
# 查找 age 为 28 的数据
9. Aggregation-执行聚合
https://www.elastic.co/guide/en/elasticsearch/reference/7.11/search-aggregations.html
聚合语法
GET /my-index-000001/_search
{
"aggs":{
"aggs_name":{ # 这次聚合的名字,方便展示在结果集中
"AGG_TYPE":{ # 聚合的类型(avg,term,terms)
}
}
}
}
示例1-搜索address中包含mill的所有人的年龄分布以及平均年龄
GET bank/_search
{
"query": {
"match": {
"address": "Mill"
}
},
"aggs": {
"ageAgg": {
"terms": {
"field": "age",
"size": 10
}
},
"ageAvg": {
"avg": {
"field": "age"
}
},
"balanceAvg": {
"avg": {
"field": "balance"
}
}
},
"size": 0
}
# "ageAgg": { --- 聚合名为 ageAgg
# "terms": { --- 聚合类型为 term
# "field": "age", --- 聚合字段为 age
# "size": 10 --- 取聚合后前十个数据
# }
# },
# ------------------------
# "ageAvg": { --- 聚合名为 ageAvg
# "avg": { --- 聚合类型为 avg 求平均值
# "field": "age" --- 聚合字段为 age
# }
# },
# ------------------------
# "balanceAvg": { --- 聚合名为 balanceAvg
# "avg": { --- 聚合类型为 avg 求平均值
# "field": "balance" --- 聚合字段为 balance
# }
# }
# ------------------------
# "size": 0 --- 不显示命中结果,只看聚合信息
结果:
{
"took" : 10,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 4,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"ageAgg" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 38,
"doc_count" : 2
},
{
"key" : 28,
"doc_count" : 1
},
{
"key" : 32,
"doc_count" : 1
}
]
},
"ageAvg" : {
"value" : 34.0
},
"balanceAvg" : {
"value" : 25208.0
}
}
}
示例2-按照年龄聚合,并且求这些年龄段的这些人的平均薪资
GET bank/_search
{
"query": {
"match_all": {}
},
"aggs": {
"ageAgg": {
"terms": {
"field": "age",
"size": 100
},
"aggs": {
"ageAvg": {
"avg": {
"field": "balance"
}
}
}
}
},
"size": 0
}
结果:
{
"took" : 12,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1000,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"ageAgg" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 31,
"doc_count" : 61,
"ageAvg" : {
"value" : 28312.918032786885
}
},
{
"key" : 39,
"doc_count" : 60,
"ageAvg" : {
"value" : 25269.583333333332
}
},
{
"key" : 26,
"doc_count" : 59,
"ageAvg" : {
"value" : 23194.813559322032
}
},
{
"key" : 32,
"doc_count" : 52,
"ageAvg" : {
"value" : 23951.346153846152
}
},
{
"key" : 35,
"doc_count" : 52,
"ageAvg" : {
"value" : 22136.69230769231
}
},
{
"key" : 36,
"doc_count" : 52,
"ageAvg" : {
"value" : 22174.71153846154
}
},
{
"key" : 22,
"doc_count" : 51,
"ageAvg" : {
"value" : 24731.07843137255
}
},
{
"key" : 28,
"doc_count" : 51,
"ageAvg" : {
"value" : 28273.882352941175
}
},
{
"key" : 33,
"doc_count" : 50,
"ageAvg" : {
"value" : 25093.94
}
},
{
"key" : 34,
"doc_count" : 49,
"ageAvg" : {
"value" : 26809.95918367347
}
},
{
"key" : 30,
"doc_count" : 47,
"ageAvg" : {
"value" : 22841.106382978724
}
},
{
"key" : 21,
"doc_count" : 46,
"ageAvg" : {
"value" : 26981.434782608696
}
},
{
"key" : 40,
"doc_count" : 45,
"ageAvg" : {
"value" : 27183.17777777778
}
},
{
"key" : 20,
"doc_count" : 44,
"ageAvg" : {
"value" : 27741.227272727272
}
},
{
"key" : 23,
"doc_count" : 42,
"ageAvg" : {
"value" : 27314.214285714286
}
},
{
"key" : 24,
"doc_count" : 42,
"ageAvg" : {
"value" : 28519.04761904762
}
},
{
"key" : 25,
"doc_count" : 42,
"ageAvg" : {
"value" : 27445.214285714286
}
},
{
"key" : 37,
"doc_count" : 42,
"ageAvg" : {
"value" : 27022.261904761905
}
},
{
"key" : 27,
"doc_count" : 39,
"ageAvg" : {
"value" : 21471.871794871793
}
},
{
"key" : 38,
"doc_count" : 39,
"ageAvg" : {
"value" : 26187.17948717949
}
},
{
"key" : 29,
"doc_count" : 35,
"ageAvg" : {
"value" : 29483.14285714286
}
}
]
}
}
}
示例3-查出所有年龄分布,并且这些年龄段中M的平均薪资和F的平均薪资以及这个年龄段的总体平均薪资
GET bank/_search
{
"query": {
"match_all": {}
},
"aggs": {
"ageAgg": {
"terms": {
"field": "age",
"size": 100
},
"aggs": {
"genderAgg": {
"terms": {
"field": "gender.keyword"
},
"aggs": {
"balanceAvg": {
"avg": {
"field": "balance"
}
}
}
},
"ageBalanceAvg": {
"avg": {
"field": "balance"
}
}
}
}
},
"size": 0
}
# "field": "gender.keyword" gender是txt没法聚合 必须加.keyword精确替代
结果:
{
"took" : 17,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1000,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"ageAgg" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : 31,
"doc_count" : 61,
"genderAgg" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "M",
"doc_count" : 35,
"balanceAvg" : {
"value" : 29565.628571428573
}
},
{
"key" : "F",
"doc_count" : 26,
"balanceAvg" : {
"value" : 26626.576923076922
}
}
]
},
"ageBalanceAvg" : {
"value" : 28312.918032786885
}
},
{
"key" : 39,
"doc_count" : 60,
"genderAgg" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 0,
"buckets" : [
{
"key" : "F",
"doc_count" : 38,
"balanceAvg" : {
"value" : 26348.684210526317
}
},
{
"key" : "M",
"doc_count" : 22,
"balanceAvg" : {
"value" : 23405.68181818182
}
}
]
},
"ageBalanceAvg" : {
"value" : 25269.583333333332
}
},
...
]
}
}
}
Elasticsearch-Mapping
Mapping-映射官网介绍:
https://www.elastic.co/guide/en/elasticsearch/reference/7.11/mapping.html
1. Mapping介绍
Maping是用来定义一个文档(document),以及它所包含的属性(field)是如何存储和索引的。
比如:使用maping来定义:
- 哪些字符串属性应该被看做全文本属性(full text fields);
- 哪些属性包含数字,日期或地理位置;
- 文档中的所有属性是否都嫩被索引(all 配置);
- 日期的格式;
- 自定义映射规则来执行动态添加属性;
查看mapping信息
GET bank/_mapping
{
"bank" : {
"mappings" : {
"properties" : {
"account_number" : {
"type" : "long"
},
"address" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"age" : {
"type" : "long"
},
"balance" : {
"type" : "long"
},
"city" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"email" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"employer" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"firstname" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"gender" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"lastname" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"state" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
2. 新版本type移除
ElasticSearch7-去掉type概念
- 关系型数据库中两个数据表示是独立的,即使他们里面有相同名称的列也不影响使用,但ES中不是这样的。elasticsearch是基于Lucene开发的搜索引擎,而ES中不同type下名称相同的filed最终在Lucene中的处理方式是一样的。
- 两个不同type下的两个user_name,在ES同一个索引下其实被认为是同一个filed,你必须在两个不同的type中定义相同的filed映射。否则,不同type中的相同字段名称就会在处理中出现冲突的情况,导致Lucene处理效率下降。
- 去掉type就是为了提高ES处理数据的效率。
- Elasticsearch 7.x URL中的type参数为可选。比如,索引一个文档不再要求提供文档类型。
- Elasticsearch 8.x 不再支持URL中的type参数。
- 解决:将索引从多类型迁移到单类型,每种类型文档一个独立索引将已存在的索引下的类型数据,全部迁移到指定位置即可。详见数据迁移
3. 属性类型
参考:官方属性类型
映射操作
参考:创建映射操作
1. 创建索引映射
创建索引并指定属性的映射规则(相当于新建表并指定字段和字段类型)
PUT /my_index
{
"mappings": {
"properties": {
"age": {
"type": "integer"
},
"email": {
"type": "keyword"
},
"name": {
"type": "text"
}
}
}
}
结果:
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "my_index"
}
2. 给已有映射增加字段
参考:官方文档
PUT /my_index/_mapping
{
"properties": {
"employee-id": {
"type": "keyword",
"index": false
}
}
}
# 这里的 "index": false,表明新增的字段不能被检索。默认是true
# https://www.elastic.co/guide/en/elasticsearch/reference/7.x/mapping-index.html
结果:
{
"acknowledged" : true
}
3. 查看映射
参考:官方文档
GET /my_index/_mapping
# 查看某一个字段的映射
GET /my_index/_mapping/field/employee-id
结果:
{
"my_index" : {
"mappings" : {
"properties" : {
"age" : {
"type" : "integer"
},
"email" : {
"type" : "keyword"
},
"employee-id" : {
"type" : "keyword",
"index" : false
},
"name" : {
"type" : "text"
}
}
}
}
}
# index false 表示不能被索引找到
4. 更新映射
参考:官方文档
对于已经存在的字段映射,我们不能更新。更新必须创建新的索引,进行数据迁移。
5. 数据迁移
迁移方式分为两种,一种是7和7之后去掉type的情况,一种是包含type 迁移的情况。
无type数据迁移
POST reindex [固定写法]
{
"source":{
"index":"twitter"
},
"dest":{
"index":"new_twitters"
}
}
有type数据迁移
POST reindex [固定写法]
{
"source":{
"index":"twitter",
"twitter":"twitter"
},
"dest":{
"index":"new_twitters"
}
}
6. 数据迁移实例
对于我们的测试数据,是包含 type 的索引 bank。
现在我们创建新的索引 newbank 并修改一些字段的类型来演示当需要更新映射时的数据迁移操作。
① 查看索引 bank 当前字段映射类型
GET /bank/_mapping
# 结果
{
"bank" : {
"mappings" : {
"properties" : {
"account_number" : {
"type" : "long"
},
"address" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"age" : {
"type" : "long"
},
"balance" : {
"type" : "long"
},
"city" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"email" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"employer" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"firstname" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"gender" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"lastname" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"state" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
② 创建新索引 newbank 并修改字段类型
PUT /newbank
{
"mappings": {
"properties": {
"account_number": {
"type": "long"
},
"address": {
"type": "text"
},
"age": {
"type": "integer"
},
"balance": {
"type": "long"
},
"city": {
"type": "keyword"
},
"email": {
"type": "keyword"
},
"employer": {
"type": "keyword"
},
"firstname": {
"type": "text"
},
"gender": {
"type": "keyword"
},
"lastname": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"state": {
"type": "keyword"
}
}
}
}
③ 数据迁移
POST _reindex
{
"source": {
"index": "bank",
"type": "account"
},
"dest": {
"index": "newbank"
}
}
结果:
#! Deprecation: [types removal] Specifying types in reindex requests is deprecated.
{
"took" : 269,
"timed_out" : false,
"total" : 1000,
"updated" : 0,
"created" : 1000,
"deleted" : 0,
"batches" : 1,
"version_conflicts" : 0,
"noops" : 0,
"retries" : {
"bulk" : 0,
"search" : 0
},
"throttled_millis" : 0,
"requests_per_second" : -1.0,
"throttled_until_millis" : 0,
"failures" : [ ]
}
④ 查看迁移后的数据
GET /newbank/_search
# 结果: 迁移后 type 统一为 _doc 移除 type
{
"took" : 367,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 1000,
"relation" : "eq"
},
"max_score" : 1.0,
"hits" : [
{
"_index" : "newbank",
"_type" : "_doc",
"_id" : "1",
"_score" : 1.0,
"_source" : {
"account_number" : 1,
"balance" : 39225,
"firstname" : "Amber",
"lastname" : "Duke",
"age" : 32,
"gender" : "M",
"address" : "880 Holmes Lane",
"employer" : "Pyrami",
"email" : "amberduke@pyrami.com",
"city" : "Brogan",
"state" : "IL"
}
},
...