Java集合---Arrays类源码解析

一、Arrays.sort()数组排序

Java Arrays中提供了对所有类型的排序。其中主要分为Primitive(8种基本类型)和Object两大类。

  基本类型:采用调优的快速排序;

  对象类型:采用改进的归并排序。

1、对于基本类型源码分析如下(以int[]为例):

  Java对Primitive(int,float等原型数据)数组采用快速排序,对Object对象数组采用归并排序。对这一区别,sun在<<The Java Tutorial>>中做出的解释如下:

  The sort operation uses a slightly optimized merge sort algorithm that is fast and stable:

  * Fast: It is guaranteed to run in n log(n) time and runs substantially faster on nearly sorted lists. Empirical tests showed it to be as fast as a highly optimized quicksort. A quicksort is generally considered to be faster than a merge sort but isn't stable and doesn't guarantee n log(n) performance.

  * Stable: It doesn't reorder equal elements. This is important if you sort the same list repeatedly on different attributes. If a user of a mail program sorts the inbox by mailing date and then sorts it by sender, the user naturally expects that the now-contiguous list of messages from a given sender will (still) be sorted by mailing date. This is guaranteed only if the second sort was stable.

  也就是说,优化的归并排序既快速(nlog(n))又稳定。

  对于对象的排序,稳定性很重要。比如成绩单,一开始可能是按人员的学号顺序排好了的,现在让我们用成绩排,那么你应该保证,本来张三在李四前面,即使他们成绩相同,张三不能跑到李四的后面去。

  而快速排序是不稳定的,而且最坏情况下的时间复杂度是O(n^2)。

  另外,对象数组中保存的只是对象的引用,这样多次移位并不会造成额外的开销,但是,对象数组对比较次数一般比较敏感,有可能对象的比较比单纯数的比较开销大很多。归并排序在这方面比快速排序做得更好,这也是选择它作为对象排序的一个重要原因之一。

  排序优化:实现中快排和归并都采用递归方式,而在递归的底层,也就是待排序的数组长度小于7时,直接使用冒泡排序,而不再递归下去。

  分析:长度为6的数组冒泡排序总比较次数最多也就1+2+3+4+5+6=21次,最好情况下只有6次比较。而快排或归并涉及到递归调用等的开销,其时间效率在n较小时劣势就凸显了,因此这里采用了冒泡排序,这也是对快速排序极重要的优化。

  源码中的快速排序,主要做了以下几个方面的优化:

  1)当待排序的数组中的元素个数较少时,源码中的阀值为7,采用的是插入排序。尽管插入排序的时间复杂度为0(n^2),但是当数组元素较少时,插入排序优于快速排序,因为这时快速排序的递归操作影响性能。

  2)较好的选择了划分元(基准元素)。能够将数组分成大致两个相等的部分,避免出现最坏的情况。例如当数组有序的的情况下,选择第一个元素作为划分元,将使得算法的时间复杂度达到O(n^2).

  源码中选择划分元的方法:

    当数组大小为 size=7 时 ,取数组中间元素作为划分元。int n=m>>1;(此方法值得借鉴)

    当数组大小 7<size<=40时,取首、中、末三个元素中间大小的元素作为划分元。

    当数组大小 size>40 时 ,从待排数组中较均匀的选择9个元素,选出一个伪中数做为划分元。

  3)根据划分元 v ,形成不变式 v* (<v)* (>v)* v*

  普通的快速排序算法,经过一次划分后,将划分元排到素组较中间的位置,左边的元素小于划分元,右边的元素大于划分元,而没有将与划分元相等的元素放在其附近,这一点,在Arrays.sort()中得到了较大的优化。

  举例:15、93、15、41、6、15、22、7、15、20

  因  7<size<=40,所以在15、6、和20 中选择v = 15 作为划分元。

  经过一次换分后: 15、15、7、6、41、20、22、93、15、15. 与划分元相等的元素都移到了素组的两边。

  接下来将与划分元相等的元素移到数组中间来,形成:7、6、15、15、15、15、41、20、22、93.

  最后递归对两个区间进行排序[7、6]和[41、20、22、93].

  部分源代码(一)如下:

 package com.util;

   public class ArraysPrimitive {
private ArraysPrimitive() {} /**
7 * 对指定的 int 型数组按数字升序进行排序。
8 */
public static void sort(int[] a) {
sort1(a, , a.length);
} /**
14 * 对指定 int 型数组的指定范围按数字升序进行排序。
15 */
public static void sort(int[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
sort1(a, fromIndex, toIndex - fromIndex);
} private static void sort1(int x[], int off, int len) {
/*
23 * 当待排序的数组中的元素个数小于 7 时,采用插入排序 。
24 *
25 * 尽管插入排序的时间复杂度为O(n^2),但是当数组元素较少时, 插入排序优于快速排序,因为这时快速排序的递归操作影响性能。
26 */
if (len < ) {
for (int i = off; i < len + off; i++)
for (int j = i; j > off && x[j - ] > x[j]; j--)
swap(x, j, j - );
return;
}
/*
34 * 当待排序的数组中的元素个数大于 或等于7 时,采用快速排序 。
35 *
36 * Choose a partition element, v
37 * 选取一个划分元,V
38 *
39 * 较好的选择了划分元(基准元素)。能够将数组分成大致两个相等的部分,避免出现最坏的情况。例如当数组有序的的情况下,
40 * 选择第一个元素作为划分元,将使得算法的时间复杂度达到O(n^2).
41 */
// 当数组大小为size=7时 ,取数组中间元素作为划分元。
int m = off + (len >> );
// 当数组大小 7<size<=40时,取首、中、末 三个元素中间大小的元素作为划分元。
if (len > ) {
int l = off;
int n = off + len - ;
/*
49 * 当数组大小 size>40 时 ,从待排数组中较均匀的选择9个元素,
50 * 选出一个伪中数做为划分元。
51 */
if (len > ) {
int s = len / ;
l = med3(x, l, l + s, l + * s);
m = med3(x, m - s, m, m + s);
n = med3(x, n - * s, n - s, n);
}
// 取出中间大小的元素的位置。
m = med3(x, l, m, n); // Mid-size, med of 3
} //得到划分元V
int v = x[m]; // Establish Invariant: v* (<v)* (>v)* v*
int a = off, b = a, c = off + len - , d = c;
while (true) {
while (b <= c && x[b] <= v) {
if (x[b] == v)
swap(x, a++, b);
b++;
}
while (c >= b && x[c] >= v) {
if (x[c] == v)
swap(x, c, d--);
c--;
}
if (b > c)
break;
swap(x, b++, c--);
}
// Swap partition elements back to middle
int s, n = off + len;
s = Math.min(a - off, b - a);
vecswap(x, off, b - s, s);
s = Math.min(d - c, n - d - );
vecswap(x, b, n - s, s);
// Recursively sort non-partition-elements
if ((s = b - a) > )
sort1(x, off, s);
if ((s = d - c) > )
sort1(x, n - s, s);
} /**
96 * Swaps x[a] with x[b].
97 */
private static void swap(int x[], int a, int b) {
int t = x[a];
x[a] = x[b];
x[b] = t;
} /**
105 * Swaps x[a .. (a+n-1)] with x[b .. (b+n-1)].
106 */
private static void vecswap(int x[], int a, int b, int n) {
for (int i=; i<n; i++, a++, b++)
swap(x, a, b);
} /**
113 * Returns the index of the median of the three indexed integers.
114 */
private static int med3(int x[], int a, int b, int c) {
return (x[a] < x[b] ? (x[b] < x[c] ? b : x[a] < x[c] ? c : a)
: (x[b] > x[c] ? b : x[a] > x[c] ? c : a));
} /**
121 * Check that fromIndex and toIndex are in range, and throw an
122 * appropriate exception if they aren't.
123 */
private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) {
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex
+ ") > toIndex(" + toIndex + ")");
if (fromIndex < )
throw new ArrayIndexOutOfBoundsException(fromIndex);
if (toIndex > arrayLen)
throw new ArrayIndexOutOfBoundsException(toIndex);
}
}

测试代码如下:

 package com.test;

  import com.util.ArraysPrimitive;

  public class ArraysTest {
public static void main(String[] args) {
int [] a={,,,,,,,,,};
ArraysPrimitive.sort(a);
for(int i=;i<a.length;i++){
System.out.print(a[i]+",");
}
//结果:6,7,15,15,15,15,20,22,41,93,
}
}

2、对于Object类型源码分析如下:

  部分源代码(二)如下:

 package com.util;

   import java.lang.reflect.Array;

   public class ArraysObject {
private static final int INSERTIONSORT_THRESHOLD = ; private ArraysObject() {} public static void sort(Object[] a) {
//java.lang.Object.clone(),理解深表复制和浅表复制
Object[] aux = (Object[]) a.clone();
mergeSort(aux, a, , a.length, );
} public static void sort(Object[] a, int fromIndex, int toIndex) {
rangeCheck(a.length, fromIndex, toIndex);
Object[] aux = copyOfRange(a, fromIndex, toIndex);
mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
} /**
23 * Src is the source array that starts at index 0
24 * Dest is the (possibly larger) array destination with a possible offset
25 * low is the index in dest to start sorting
26 * high is the end index in dest to end sorting
27 * off is the offset to generate corresponding low, high in src
28 */
private static void mergeSort(Object[] src, Object[] dest, int low,
int high, int off) {
int length = high - low; // Insertion sort on smallest arrays
if (length < INSERTIONSORT_THRESHOLD) {
for (int i = low; i < high; i++)
for (int j = i; j > low &&
((Comparable) dest[j - ]).compareTo(dest[j]) > ; j--)
swap(dest, j, j - );
return;
} // Recursively sort halves of dest into src
int destLow = low;
int destHigh = high;
low += off;
high += off;
/*
48 * >>>:无符号右移运算符
49 * expression1 >>> expresion2:expression1的各个位向右移expression2
50 * 指定的位数。右移后左边空出的位数用0来填充。移出右边的位被丢弃。
51 * 例如:-14>>>2; 结果为:1073741820
52 */
int mid = (low + high) >>> ;
mergeSort(dest, src, low, mid, -off);
mergeSort(dest, src, mid, high, -off); // If list is already sorted, just copy from src to dest. This is an
// optimization that results in faster sorts for nearly ordered lists.
if (((Comparable) src[mid - ]).compareTo(src[mid]) <= ) {
System.arraycopy(src, low, dest, destLow, length);
return;
} // Merge sorted halves (now in src) into dest
for (int i = destLow, p = low, q = mid; i < destHigh; i++) {
if (q >= high || p < mid
&& ((Comparable) src[p]).compareTo(src[q]) <= )
dest[i] = src[p++];
else
dest[i] = src[q++];
}
} /**
75 * Check that fromIndex and toIndex are in range, and throw an appropriate
76 * exception if they aren't.
77 */
private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) {
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex
+ ") > toIndex(" + toIndex + ")");
if (fromIndex < )
throw new ArrayIndexOutOfBoundsException(fromIndex);
if (toIndex > arrayLen)
throw new ArrayIndexOutOfBoundsException(toIndex);
} public static <T> T[] copyOfRange(T[] original, int from, int to) {
return copyOfRange(original, from, to, (Class<T[]>) original.getClass());
} public static <T, U> T[] copyOfRange(U[] original, int from, int to,
Class<? extends T[]> newType) {
int newLength = to - from;
if (newLength < )
throw new IllegalArgumentException(from + " > " + to);
T[] copy = ((Object) newType == (Object) Object[].class)
? (T[]) new Object[newLength]
: (T[]) Array.newInstance(newType.getComponentType(), newLength);
System.arraycopy(original, from, copy, ,
Math.min(original.length - from, newLength));
return copy;
} /**
106 * Swaps x[a] with x[b].
107 */
private static void swap(Object[] x, int a, int b) {
Object t = x[a];
x[a] = x[b];
x[b] = t;
}
}

测试代码如下:

 package com.test;

  import com.util.ArraysObject;

  public class ArraysObjectSortTest {
public static void main(String[] args) {
Student stu1=new Student(,100.0F);
Student stu2=new Student(,90.0F);
Student stu3=new Student(,90.0F);
Student stu4=new Student(,95.0F);
Student[] stus={stu1,stu2,stu3,stu4};
//Arrays.sort(stus);
ArraysObject.sort(stus);
for(int i=;i<stus.length;i++){
System.out.println(stus[i].getId()+" : "+stus[i].getScore());
}
/* 1002 : 90.0
18 * 1003 : 90.0
19 * 1004 : 95.0
20 * 1001 : 100.0
21 */
}
}
class Student implements Comparable<Student>{
private int id; //学号
private float score; //成绩
public Student(){}
public Student(int id,float score){
this.id=id;
this.score=score;
}
@Override
public int compareTo(Student s) {
return (int)(this.score-s.getScore());
}
public int getId() {
return id;
}
public void setId(int id) {
this.id = id;
}
public float getScore() {
return score;
}
public void setScore(float score) {
this.score = score;
}
}

辅助理解代码:

 package com.lang;

  public final class System {
//System 类不能被实例化。
private System() {}
//在 System 类提供的设施中,有标准输入、标准输出和错误输出流;对外部定义的属性
//和环境变量的访问;加载文件和库的方法;还有快速复制数组的一部分的实用方法。
/**
9 * src and dest都必须是同类型或者可以进行转换类型的数组.
10 * @param src the source array.
11 * @param srcPos starting position in the source array.
12 * @param dest the destination array.
13 * @param destPos starting position in the destination data.
14 * @param length the number of array elements to be copied.
15 */
public static native void arraycopy(Object src, int srcPos, Object dest,
int destPos, int length);
} package com.lang.reflect; public final class Array {
private Array() {} //创建一个具有指定的组件类型和维度的新数组。
public static Object newInstance(Class<?> componentType, int length)
throws NegativeArraySizeException {
return newArray(componentType, length);
} private static native Object newArray(Class componentType, int length)
throws NegativeArraySizeException;
}

二、Arrays.asList

慎用ArrayList的contains方法,使用HashSet的contains方法代替

在启动一个应用的时候,发现其中有一处数据加载要数分钟,刚开始以为是需要load的数据比较多的缘故,查了一下数据库有6条左右,但是单独写了一个数据读取的方法,将这6万多条全部读过来,却只需要不到10秒钟,就觉得这里面肯定有问题,于是仔细看其中的逻辑,其中有一段数据去重的逻辑,就是记录中存在某几个字段相同的,就认为是重复数据,就需要将重复数据给过滤掉。这里就用到了一个List来存放这几个字段所组成的主键,如果发现相同的就不处理,代码无非就是下面这样:

1 List<string> uniqueKeyList = new ArrayList<string>();
2 //......
3 if (uniqueKeyList.contains(uniqueKey)) {
continue;
}

根据键去查找是不是已经存在了,来判断是否重复数据。经过分析,这一块耗费了非常多的时候,于是就去查看ArrayList的contains方法的源码,发现其最终会调用他本身的indexOf方法:

7public int indexOf(Object elem) {
if (elem == null) {
for (int i = ; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = ; i < size; i++)
if (elem.equals(elementData[i]))
return i;
}
return -;
}

原来在这里他做的是遍历整个list进行查找,最多可能对一个键的查找会达到6万多次,也就是会扫描整个List,验怪会这么慢了。

于是将原来的List替换为Set:

Set<string> uniqueKeySet = new HashSet<string>();
//......
if (uniqueKeySet.contains(uniqueKey)) {
continue;
}

速度一下就上去了,在去重这一块最多花费了一秒钟,为什么HashSet的速度一下就上去了,那是因为其内部使用的是Hashtable,这是HashSet的contains的源码:

public boolean contains(Object o) {
return map.containsKey(o);
}

关于UnsupportedOperationException异常

在使用Arrays.asList()后调用add,remove这些method时出现java.lang.UnsupportedOperationException异常。这是由于Arrays.asList() 返回java.util.Arrays$ArrayList, 而不是ArrayList。Arrays$ArrayList和ArrayList都是继承AbstractList,remove,add等method在AbstractList中是默认throw UnsupportedOperationException而且不作任何操作。ArrayList override这些method来对list进行操作,但是Arrays$ArrayList没有override remove(),add()等,所以throw UnsupportedOperationException。

上一篇:仿淘宝开放平台之消息服务——服务端消息验证


下一篇:ANSI Common Lisp 中文翻譯版 — ANSI Common Lisp 中文版