hive UDF

今天有同事来问一个我写过的UDF的问题,想起之前貌似写过一篇这样的文章,草稿箱里找了下,确实有,躺了一年半了,发出来,也许对某些同学有帮助~


HIVE允许用户使用UDF(user defined function)对数据进行处理。
用户可以使用‘show functions’ 查看function list,可以使用‘describe function function-name‘查看函数说明。
hive> show functions;
OK
!
!=
......
Time taken: 0.275 seconds
hive> desc function substr;
OK
substr(str, pos[, len]) - returns the substring of str that starts at pos and is of length len orsubstr(bin, pos[, len]) - returns the slice of byte array that starts at pos and is of length len
Time taken: 0.095 seconds

hive提供的build-in函数包括以下几类:
1. 关系操作符:包括 = 、 <> 、 <= 、>=等
2. 算数操作符:包括 + 、 - 、 *、/等
3. 逻辑操作符:包括AND 、 && 、 OR 、 || 等
4. 复杂类型构造函数:包括map、struct、create_union等
5. 复杂类型操作符:包括A[n]、Map[key]、S.x
6. 数学操作符:包括ln(double a)、sqrt(double a)等
7. 集合操作符:包括size(Array<T>)、sort_array(Array<T>)等
8. 类型转换函数: binary(string|binary)、cast(expr as <type>)
9. 日期函数:包括from_unixtime(bigint unixtime[, string format])、unix_timestamp()等
10.条件函数:包括if(boolean testCondition, T valueTrue, T valueFalseOrNull)等
11. 字符串函数:包括acat(string|binary A, string|binary B...)等
12. 其他:xpath、get_json_objectscii(string str)、con

编写Hive UDF有两种方式:
1. extends UDF , 重写evaluate方法
2. extends GenericUDF,重写initialize、getDisplayString、evaluate方法


编写UDF代码实例(更多例子参考https://svn.apache.org/repos/asf/hive/tags/release-0.8.1/ql/src/java/org/apache/hadoop/hive/ql/udf/):
功能:大小转小写
ToLowerCase.java:
package test.udf;

import org.apache.hadoop.hive.ql.exec.UDF;
import org.apache.hadoop.io.Text;

public class ToLowerCase extends UDF {
    public Text evaluate(final Text s) {
        if (s == null) { return null; }
        return new Text(s.toString().toLowerCase());
    }
}

功能:计算array中去重后元素个数
UDFArrayUniqElementNumber .java

package test.udf;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDF;
import org.apache.hadoop.hive.serde2.objectinspector.ListObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorUtils;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector.Category;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hadoop.io.IntWritable;

/**
 * UDF:
 * Get nubmer of objects with duplicate elements eliminated
 * @author xiaomin.zhou
 */
@Description(name = "array_uniq_element_number", value = "_FUNC_(array) - Returns nubmer of objects with duplicate elements eliminated.", extended = "Example:\n"
                + "  > SELECT _FUNC_(array(1, 2, 2, 3, 3)) FROM src LIMIT 1;\n" + "  3")
public class UDFArrayUniqElementNumber extends GenericUDF {

        private static final int ARRAY_IDX = 0;
        private static final int ARG_COUNT = 1; // Number of arguments to this UDF
        private static final String FUNC_NAME = "ARRAY_UNIQ_ELEMENT_NUMBER"; // External Name

        private ListObjectInspector arrayOI;
        private ObjectInspector arrayElementOI;
        private final IntWritable result = new IntWritable(-1);

        public ObjectInspector initialize(ObjectInspector[] arguments)
                        throws UDFArgumentException {

                // Check if two arguments were passed
                if (arguments.length != ARG_COUNT) {
                        throw new UDFArgumentException("The function " + FUNC_NAME
                                        + " accepts " + ARG_COUNT + " arguments.");
                }

                // Check if ARRAY_IDX argument is of category LIST
                if (!arguments[ARRAY_IDX].getCategory().equals(Category.LIST)) {
                        throw new UDFArgumentTypeException(ARRAY_IDX, "\""
                                        + org.apache.hadoop.hive.serde.Constants.LIST_TYPE_NAME
                                        + "\" " + "expected at function ARRAY_CONTAINS, but "
                                        + "\"" + arguments[ARRAY_IDX].getTypeName() + "\" "
                                        + "is found");
                }

                arrayOI = (ListObjectInspector) arguments[ARRAY_IDX];
                arrayElementOI = arrayOI.getListElementObjectInspector();

                return PrimitiveObjectInspectorFactory.writableIntObjectInspector;
        }

        public IntWritable evaluate(DeferredObject[] arguments)
                        throws HiveException {

                result.set(0);

                Object array = arguments[ARRAY_IDX].get();
                int arrayLength = arrayOI.getListLength(array);
                if (arrayLength <= 1) {
                        result.set(arrayLength);
                        return result;
                }

                //element compare; Algorithm complexity: O(N^2)
                int num = 1; 
                int i, j; 
                for(i = 1; i < arrayLength; i++)
                {
                        Object listElement = arrayOI.getListElement(array, i);
                        for(j = i - 1; j >= 0; j--)
                        {
                                if (listElement != null) {
                                        Object tmp = arrayOI.getListElement(array, j);
                                        if (ObjectInspectorUtils.compare(tmp, arrayElementOI, listElement,
                                                        arrayElementOI) == 0) {
                                                break;
                                        }
                                }
                        }
                        if(-1 == j)
                        {
                                num++;
                        }
                }

                result.set(num);
                return result;
        }

        public String getDisplayString(String[] children) {
                assert (children.length == ARG_COUNT);
                return "array_uniq_element_number(" + children[ARRAY_IDX]+ ")";
        }
}

生成udf.jar

hive有三种方法使用自定义的UDF函数
1. 临时添加UDF

如下:
hive> select * from test;   
OK
Hello
wORLD
ZXM
ljz
Time taken: 13.76 seconds
hive> add jar /home/work/udf.jar;                              
Added /home/work/udf.jar to class path
Added resource: /home/work/udf.jar
hive> create temporary function mytest as ‘test.udf.ToLowerCase‘;
OK
Time taken: 0.103 seconds
hive> show functions;
......
mytest
......
hive> select mytest(test.name) from test;
......
OK
hello
world
zxm
ljz
Time taken: 38.218 seconds
这种方式在会话结束后,函数自动销毁,因此每次打开新的会话,都需要重新add jar并且create temporary function

2. 进入会话前自动创建
使用hive -i参数在进入hive时自动初始化
$ cat hive_init 
add jar /home/work/udf.jar;
create temporary function mytest as ‘test.udf.ToLowerCase‘;
$ hive -i hive_init 
Logging initialized using configuration in file:/home/work/hive/hive-0.8.1/conf/hive-log4j.properties
Hive history file=/tmp/work/hive_job_log_work_201209200147_1951517527.txt
hive> show functions;
......
mytest
......
hive> select mytest(test.name) from test;
......
OK
hello
world
zxm
ljz
方法2和方法1本质上是相同的,区别在于方法2在会话初始化时自动完成

3. 自定义UDF注册为hive内置函数
可参考:hive利器 自定义UDF+重编译hive

和前两者相比,第三种方式直接将用户的自定义函数作为注册为内置函数,未来使用起来非常简单,但这种方式也非常危险,一旦出错,将是灾难性的,因此,建议如果不是特别通用,并且固化下来的函数,还是使用前两种方式比较靠谱。


Reference:

How to write a Hive UDF

hive UDF

上一篇:hdu 2191 悼念512汶川大地震遇难同胞——珍惜现在,感恩生活(多重背包)


下一篇:从零开始学习cocoStudio(6)--场景