15.1 multiprocessing
multiprocessing是多进程模块,多进程提供了任务并发性,能充分利用多核处理器。避免了GIL(全局解释锁)对资源的影响。
有以下常用类:
类 |
描述 |
Process(group=None, target=None, name=None, args=(), kwargs={}) | 派生一个进程对象,然后调用start()方法启动 |
Pool(processes=None, initializer=None, initargs=()) |
返回一个进程池对象,processes进程池进程数量 |
Pipe(duplex=True) | 返回两个连接对象由管道连接 |
Queue(maxsize=0) | 返回队列对象,操作方法跟Queue.Queue一样 |
multiprocessing.dummy | 这个库是用于实现多线程 |
Process()类有以下些方法:
run() | |
start() | 启动进程对象 |
join([timeout]) | 等待子进程终止,才返回结果。可选超时。 |
name | 进程名字 |
is_alive() | 返回进程是否存活 |
daemon | 进程的守护标记,一个布尔值 |
pid | 返回进程ID |
exitcode | 子进程退出状态码 |
terminate() | 终止进程。在unix上使用SIGTERM信号,在windows上使用TerminateProcess()。 |
Pool()类有以下些方法:
apply(func, args=(), kwds={}) | 等效内建函数apply() |
apply_async(func, args=(), kwds={}, callback=None) | 异步,等效内建函数apply() |
map(func, iterable, chunksize=None) | 等效内建函数map() |
map_async(func, iterable, chunksize=None, callback=None) | 异步,等效内建函数map() |
imap(func, iterable, chunksize=1) | 等效内建函数itertools.imap() |
imap_unordered(func, iterable, chunksize=1) | 像imap()方法,但结果顺序是任意的 |
close() | 关闭进程池 |
terminate() | 终止工作进程,垃圾收集连接池对象 |
join() | 等待工作进程退出。必须先调用close()或terminate() |
Pool.apply_async()和Pool.map_aysnc()又提供了以下几个方法:
get([timeout]) | 获取结果对象里的结果。如果超时没有,则抛出TimeoutError异常 |
wait([timeout]) | 等待可用的结果或超时 |
ready() | 返回调用是否已经完成 |
successful() |
举例:
1)简单的例子,用子进程处理函数
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
from multiprocessing import Process
import os
def worker(name):
print name
print 'parent process id:' , os.getppid()
print 'process id:' , os.getpid()
if __name__ = = '__main__' :
p = Process(target = worker, args = ( 'function worker.' ,))
p.start()
p.join()
print p.name
# python test.py function worker. parent process id : 9079
process id : 9080
Process - 1
|
Process实例传入worker函数作为派生进程执行的任务,用start()方法启动这个实例。
2)加以说明join()方法
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
from multiprocessing import Process
import os
def worker(n):
print 'hello world' , n
if __name__ = = '__main__' :
print 'parent process id:' , os.getppid()
for n in range ( 5 ):
p = Process(target = worker, args = (n,))
p.start()
p.join()
print 'child process id:' , p.pid
print 'child process name:' , p.name
# python test.py parent process id : 9041
hello world 0
child process id : 9132
child process name: Process - 1
hello world 1
child process id : 9133
child process name: Process - 2
hello world 2
child process id : 9134
child process name: Process - 3
hello world 3
child process id : 9135
child process name: Process - 4
hello world 4
child process id : 9136
child process name: Process - 5
# 把p.join()注释掉再执行 # python test.py parent process id : 9041
child process id : 9125
child process name: Process - 1
child process id : 9126
child process name: Process - 2
child process id : 9127
child process name: Process - 3
child process id : 9128
child process name: Process - 4
hello world 0
hello world 1
hello world 3
hello world 2
child process id : 9129
child process name: Process - 5
hello world 4
|
可以看出,在使用join()方法时,输出的结果都是顺序排列的。相反是乱序的。因此join()方法是堵塞父进程,要等待当前子进程执行完后才会继续执行下一个子进程。否则会一直生成子进程去执行任务。
在要求输出的情况下使用join()可保证每个结果是完整的。
3)给子进程命名,方便管理
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
|
from multiprocessing import Process
import os, time
def worker1(n):
print 'hello world' , n
def worker2():
print 'worker2...'
if __name__ = = '__main__' :
print 'parent process id:' , os.getppid()
for n in range ( 3 ):
p1 = Process(name = 'worker1' , target = worker1, args = (n,))
p1.start()
p1.join()
print 'child process id:' , p1.pid
print 'child process name:' , p1.name
p2 = Process(name = 'worker2' , target = worker2)
p2.start()
p2.join()
print 'child process id:' , p2.pid
print 'child process name:' , p2.name
# python test.py parent process id : 9041
hello world 0
child process id : 9248
child process name: worker1 hello world 1
child process id : 9249
child process name: worker1 hello world 2
child process id : 9250
child process name: worker1 worker2... child process id : 9251
child process name: worker2 |
4)设置守护进程,父进程退出也不影响子进程运行
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
from multiprocessing import Process
def worker1(n):
print 'hello world' , n
def worker2():
print 'worker2...'
if __name__ = = '__main__' :
for n in range ( 3 ):
p1 = Process(name = 'worker1' , target = worker1, args = (n,))
p1.daemon = True
p1.start()
p1.join()
p2 = Process(target = worker2)
p2.daemon = False
p2.start()
p2.join()
|
5)使用进程池
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
#!/usr/bin/python # -*- coding: utf-8 -*- from multiprocessing import Pool, current_process
import os, time, sys
def worker(n):
print 'hello world' , n
print 'process name:' , current_process().name # 获取当前进程名字
time.sleep( 1 ) # 休眠用于执行时有时间查看当前执行的进程
if __name__ = = '__main__' :
p = Pool(processes = 3 )
for i in range ( 8 ):
r = p.apply_async(worker, args = (i,))
r.get(timeout = 5 ) # 获取结果中的数据
p.close()
# python test.py hello world 0
process name: PoolWorker - 1
hello world 1
process name: PoolWorker - 2
hello world 2
process name: PoolWorker - 3
hello world 3
process name: PoolWorker - 1
hello world 4
process name: PoolWorker - 2
hello world 5
process name: PoolWorker - 3
hello world 6
process name: PoolWorker - 1
hello world 7
process name: PoolWorker - 2
|
进程池生成了3个子进程,通过循环执行8次worker函数,进程池会从子进程1开始去处理任务,当到达最大进程时,会继续从子进程1开始。
在运行此程序同时,再打开一个终端窗口会看到生成的子进程:
1
2
3
4
5
|
# ps -ef |grep python root 40244 9041 4 16 : 43 pts / 3 00 : 00 : 00 python test.py
root 40245 40244 0 16 : 43 pts / 3 00 : 00 : 00 python test.py
root 40246 40244 0 16 : 43 pts / 3 00 : 00 : 00 python test.py
root 40247 40244 0 16 : 43 pts / 3 00 : 00 : 00 python test.py
|
6)进程池map()方法
map()方法是将序列中的元素通过函数处理返回新列表。
1
2
3
4
5
6
7
8
9
10
11
|
from multiprocessing import Pool
def worker(url):
return 'http://%s' % url
urls = [ 'www.baidu.com' , 'www.jd.com' ]
p = Pool(processes = 2 )
r = p. map (worker, urls)
p.close() print r
# python test.py [ 'http://www.baidu.com' , 'http://www.jd.com' ]
|
7)Queue进程间通信
multiprocessing支持两种类型进程间通信:Queue和Pipe。
Queue库已经封装到multiprocessing库中,在第十章 Python常用标准库已经讲解到Queue库使用,有需要请查看以前博文。
例如:一个子进程向队列写数据,一个子进程读取队列数据
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
#!/usr/bin/python # -*- coding: utf-8 -*- from multiprocessing import Process, Queue
# 写数据到队列 def write(q):
for n in range ( 5 ):
q.put(n)
print 'Put %s to queue.' % n
# 从队列读数据 def read(q):
while True :
if not q.empty():
value = q.get()
print 'Get %s from queue.' % value
else :
break
if __name__ = = '__main__' :
q = Queue()
pw = Process(target = write, args = (q,))
pr = Process(target = read, args = (q,))
pw.start()
pw.join()
pr.start()
pr.join()
# python test.py Put 0 to queue.
Put 1 to queue.
Put 2 to queue.
Put 3 to queue.
Put 4 to queue.
Get 0 from queue.
Get 1 from queue.
Get 2 from queue.
Get 3 from queue.
Get 4 from queue.
|
8)Pipe进程间通信
1
2
3
4
5
6
7
8
9
10
11
12
13
|
from multiprocessing import Process, Pipe
def f(conn):
conn.send([ 42 , None , 'hello' ])
conn.close()
if __name__ = = '__main__' :
parent_conn, child_conn = Pipe()
p = Process(target = f, args = (child_conn,))
p.start()
print parent_conn.recv()
p.join()
# python test.py [ 42 , None , 'hello' ]
|
Pipe()创建两个连接对象,每个链接对象都有send()和recv()方法,
9)进程间对象共享
Manager类返回一个管理对象,它控制服务端进程。提供一些共享方式:Value()、Array()、list()、dict()、Event()等
创建Manger对象存放资源,其他进程通过访问Manager获取。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
from multiprocessing import Process, Manager
def f(v, a, l, d):
v.value = 100
a[ 0 ] = 123
l.append( 'Hello' )
d[ 'a' ] = 1
mgr = Manager()
v = mgr.Value( 'v' , 0 )
a = mgr.Array( 'd' , range ( 5 ))
l = mgr. list ()
d = mgr. dict ()
p = Process(target = f, args = (v, a, l, d))
p.start() p.join() print (v)
print (a)
print (l)
print (d)
# python test.py Value( 'v' , 100 )
array( 'd' , [ 123.0 , 1.0 , 2.0 , 3.0 , 4.0 ])
[ 'Hello' ]
{ 'a' : 1 }
|
10)写一个多进程的例子
比如:多进程监控URL是否正常
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
|
from multiprocessing import Pool, current_process
import urllib2
urls = [
'http://www.baidu.com' ,
'http://www.jd.com' ,
'http://www.sina.com' ,
'http://www.163.com' ,
] def status_code(url):
print 'process name:' , current_process().name
try :
req = urllib2.urlopen(url, timeout = 5 )
return req.getcode()
except urllib2.URLError:
return
p = Pool(processes = 4 )
for url in urls:
r = p.apply_async(status_code, args = (url,))
if r.get(timeout = 5 ) = = 200 :
print "%s OK" % url
else :
print "%s NO" % url
# python test.py process name: PoolWorker - 1
http: / / www.baidu.com OK
process name: PoolWorker - 2
http: / / www.jd.com OK
process name: PoolWorker - 3
http: / / www.sina.com OK
process name: PoolWorker - 4
http: / / www. 163.com OK
|
博客地址:http://lizhenliang.blog.51cto.com
QQ群:323779636(Shell/Python运维开发群)
15.2 threading
threading模块类似于multiprocessing多进程模块,使用方法也基本一样。threading库是对thread库进行二次封装,我们主要用到Thread类,用Thread类派生线程对象。
1)使用Thread类实现多线程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
from threading import Thread, current_thread
def worker(n):
print 'thread name:' , current_thread().name
print 'hello world' , n
for n in range ( 5 ):
t = Thread(target = worker, args = (n, ))
t.start()
t.join() # 等待主进程结束
# python test.py thread name: Thread - 1
hello world 0
thread name: Thread - 2
hello world 1
thread name: Thread - 3
hello world 2
thread name: Thread - 4
hello world 3
thread name: Thread - 5
hello world 4
|
2)还有一种方式继承Thread类实现多线程,子类可以重写__init__和run()方法实现功能逻辑。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
#!/usr/bin/python # -*- coding: utf-8 -*- from threading import Thread, current_thread
class Test(Thread):
# 重写父类构造函数,那么父类构造函数将不会执行
def __init__( self , n):
Thread.__init__( self )
self .n = n
def run( self ):
print 'thread name:' , current_thread().name
print 'hello world' , self .n
if __name__ = = '__main__' :
for n in range ( 5 ):
t = Test(n)
t.start()
t.join()
# python test.py thread name: Thread - 1
hello world 0
thread name: Thread - 2
hello world 1
thread name: Thread - 3
hello world 2
thread name: Thread - 4
hello world 3
thread name: Thread - 5
hello world 4
|
3)Lock
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
|
from threading import Thread, Lock, current_thread
lock = Lock()
class Test(Thread):
# 重写父类构造函数,那么父类构造函数将不会执行
def __init__( self , n):
Thread.__init__( self )
self .n = n
def run( self ):
lock.acquire() # 获取锁
print 'thread name:' , current_thread().name
print 'hello world' , self .n
lock.release() # 释放锁
if __name__ = = '__main__' :
for n in range ( 5 ):
t = Test(n)
t.start()
t.join()
|
众所周知,Python多线程有GIL全局锁,意思是把每个线程执行代码时都上了锁,执行完成后会自动释放GIL锁,意味着同一时间只有一个线程在运行代码。由于所有线程共享父进程内存、变量、资源,很容易多个线程对其操作,导致内容混乱。
当你在写多线程程序的时候如果输出结果是混乱的,这时你应该考虑到在不使用锁的情况下,多个线程运行时可能会修改原有的变量,导致输出不一样。
由此看来Python多线程是不能利用多核CPU提高处理性能,但在IO密集情况下,还是能提高一定的并发性能。也不必担心,多核CPU情况可以使用多进程实现多核任务。Python多进程是复制父进程资源,互不影响,有各自独立的GIL锁,保证数据不会混乱。能用多进程就用吧!