pandas有一种功能非常强大的方法,它就是accessor
,可以将它理解为一种属性接口,通过它可以获得额外的方法。其实这样说还是很笼统,下面我们通过代码和实例来理解一下。
>>> pd.Series._accessors {'cat', 'str', 'dt'}
对于Series数据结构使用_accessors
方法,我们得到了3个对象:cat
,str
,dt
。
- .cat:用于分类数据(Categorical data)
- .str:用于字符数据(String Object data)
- .dt:用于时间数据(datetime-like data)
下面我们依次看一下这三个对象是如何使用的。
str对象的使用
Series数据类型:str字符串
# 定义一个Series序列 >>> addr = pd.Series([ ... 'Washington, D.C. 20003', ... '*lyn, NY 11211-1755', ... 'Omaha, NE 68154', ... 'Pittsburgh, PA 15211' ... ]) >>> addr.str.upper() 0 WASHINGTON, D.C. 20003 1 *LYN, NY 11211-1755 2 OMAHA, NE 68154 3 PITTSBURGH, PA 15211 dtype: object >>> addr.str.count(r'\d') 0 5 1 9 2 5 3 5 dtype: int64
关于以上str对象的2个方法说明:
-
Series.str.upper
:将Series中所有字符串变为大写; -
Series.str.count
:对Series中所有字符串的个数进行计数;
其实不难发现,该用法的使用与Python中字符串的操作很相似。没错,在pandas中你一样可以这样简单的操作,而不同的是你操作的是一整列的字符串数据。仍然基于以上数据集,再看它的另一个操作:
>>> regex = (r'(?P<city>[A-Za-z ]+), ' # 一个或更多字母 ... r'(?P<state>[A-Z]{2}) ' # 两个大写字母 ... r'(?P<zip>\d{5}(?:-\d{4})?)') # 可选的4个延伸数字 ... >>> addr.str.replace('.', '').str.extract(regex) city state zip 0 Washington DC 20003 1 *lyn NY 11211-1755 2 Omaha NE 68154 3 Pittsburgh PA 15211
关于以上str对象的2个方法说明:
-
Series.str.replace
:将Series中指定字符串替换; -
Series.str.extract
:通过正则表达式提取字符串中的数据信息;
这个用法就有点复杂了,因为很明显看到,这是一个链式的用法。通过replace
将 " . "
替换为""
,即为空,紧接着又使用了3个正则表达式(分别对应city,state,zip)通过extract
对数据进行了提取,并由原来的Series数据结构变为了DataFrame数据结构。
当然,除了以上用法外,常用的属性和方法还有.rstrip
,.contains
,split
等,我们通过下面代码查看一下str
属性的完整列表:
>>> [i for i in dir(pd.Series.str) if not i.startswith('_')] ['capitalize', 'cat', 'center', 'contains', 'count', 'decode', 'encode', 'endswith', 'extract', 'extractall', 'find', 'findall', 'get', 'get_dummies', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'islower', 'isnumeric', 'isspace', 'istitle', 'isupper', 'join', 'len', 'ljust', 'lower', 'lstrip', 'match', 'normalize', 'pad', 'partition', 'repeat', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip', 'slice', 'slice_replace', 'split', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'wrap', 'zfill']
属性有很多,对于具体的用法,如果感兴趣可以自己进行摸索练习。
dt对象的使用
Series数据类型:datetime
因为数据需要datetime
类型,所以下面使用pandas的date_range()
生成了一组日期datetime
演示如何进行dt
对象操作。
>>> daterng = pd.Series(pd.date_range('2017', periods=9, freq='Q')) >>> daterng 0 2017-03-31 1 2017-06-30 2 2017-09-30 3 2017-12-31 4 2018-03-31 5 2018-06-30 6 2018-09-30 7 2018-12-31 8 2019-03-31 dtype: datetime64[ns] >>> daterng.dt.day_name() 0 Friday 1 Friday 2 Saturday 3 Sunday 4 Saturday 5 Saturday 6 Sunday 7 Monday 8 Sunday dtype: object >>> # 查看下半年 >>> daterng[daterng.dt.quarter > 2] 2 2017-09-30 3 2017-12-31 6 2018-09-30 7 2018-12-31 dtype: datetime64[ns] >>> daterng[daterng.dt.is_year_end] 3 2017-12-31 7 2018-12-31 dtype: datetime64[ns]
以上关于dt的3种方法说明:
-
Series.dt.day_name()
:从日期判断出所处星期数; -
Series.dt.quarter
:从日期判断所处季节; -
Series.dt.is_year_end
:从日期判断是否处在年底;
其它方法也都是基于datetime的一些变换,并通过变换来查看具体微观或者宏观日期。
cat对象的使用
Series数据类型:Category
在说cat对象的使用前,先说一下Category
这个数据类型,它的作用很强大。虽然我们没有经常性的在内存中运行上g的数据,但是我们也总会遇到执行几行代码会等待很久的情况。使用Category数据的一个好处就是:可以很好的节省在时间和空间的消耗。下面我们通过几个实例来学习一下。
>>> colors = pd.Series([ ... 'periwinkle', ... 'mint green', ... 'burnt orange', ... 'periwinkle', ... 'burnt orange', ... 'rose', ... 'rose', ... 'mint green', ... 'rose', ... 'navy' ... ]) ... >>> import sys >>> colors.apply(sys.getsizeof) 0 59 1 59 2 61 3 59 4 61 5 53 6 53 7 59 8 53 9 53 dtype: int64
上面我们通过使用sys.getsizeof
来显示内存占用的情况,数字代表字节数。还有另一种计算内容占用的方法:memory_usage()
,后面会使用。
现在我们将上面colors的不重复值映射为一组整数,然后再看一下占用的内存。
>>> mapper = {v: k for k, v in enumerate(colors.unique())} >>> mapper {'periwinkle': 0, 'mint green': 1, 'burnt orange': 2, 'rose': 3, 'navy': 4} >>> as_int = colors.map(mapper) >>> as_int 0 0 1 1 2 2 3 0 4 2 5 3 6 3 7 1 8 3 9 4 dtype: int64 >>> as_int.apply(sys.getsizeof) 0 24 1 28 2 28 3 24 4 28 5 28 6 28 7 28 8 28 9 28 dtype: int64
注:对于以上的整数值映射也可以使用更简单的pd.factorize()方法代替。
我们发现上面所占用的内存是使用object
类型时的一半。其实,这种情况就类似于Category data
类型内部的原理。
内存占用区别:Categorical所占用的内存与Categorical分类的数量和数据的长度成正比,相反,object所占用的内存则是一个常数乘以数据的长度。
下面是object
内存使用和category
内存使用的情况对比。
>>> colors.memory_usage(index=False, deep=True) 650 >>> colors.astype('category').memory_usage(index=False, deep=True) 495
上面结果是使用object
和Category
两种情况下内存的占用情况。
我们发现效果并没有我们想象中的那么好。但是注意Category
内存是成比例的,如果数据集的数据量很大,但不重复分类(unique)值很少的情况下,那么Category
的内存占用可以节省达到10倍以上,比如下面数据量增大的情况:
>>> manycolors = colors.repeat(10) >>> len(manycolors) / manycolors.nunique() 20.0 >>> manycolors.memory_usage(index=False, deep=True) 6500 >>> manycolors.astype('category').memory_usage(index=False, deep=True) 585
可以看到,在数据量增加10倍以后,使用Category
所占内容节省了10倍以上。
除了占用内存节省外,另一个额外的好处是计算效率有了很大的提升。因为对于Category
类型的Series
,str字符的操作发生在.cat.categories
的非重复值上,而并非原Series上的所有元素上。也就是说对于每个非重复值都只做一次操作,然后再向与非重复值同类的值映射过去。
对于Category
的数据类型,可以使用accessor
的cat
对象,以及相应的属性和方法来操作Category数据。
>>> ccolors = colors.astype('category') >>> ccolors.cat.categories Index(['burnt orange', 'mint green', 'navy', 'periwinkle', 'rose'], dtype='object')
实际上,对于开始的整数类型映射,我们可以先通过reorder_categories
进行重新排
序,然后再使用cat.codes
来实现对整数的映射,来达到同样的效果。
>>> ccolors.cat.reorder_categories(mapper).cat.codes 0 0 1 1 2 2 3 0 4 2 5 3 6 3 7 1 8 3 9 4 dtype: int8
dtype
类型是Numpy的int8(-127~128)
。可以看出以上只需要一个单字节就可以在内存中包含所有的值。我们开始的做法默认使用了int64类型,然而通过pandas的使用可以很智能的将Category
数据类型变为最小的类型。
让我们来看一下cat
还有什么其它的属性和方法可以使用。下面cat
的这些属性基本都是关于查看和操作Category
数据类型的。
>>> [i for i in dir(ccolors.cat) if not i.startswith('_')] ['add_categories', 'as_ordered', 'as_unordered', 'categories', 'codes', 'ordered', 'remove_categories', 'remove_unused_categories', 'rename_categories', 'reorder_categories', 'set_categories']
但是Category
数据的使用不是很灵活。例如,插入一个之前没有的值,首先需要将这个值添加到.categories
的容器中,然后再添加值。
>>> ccolors.iloc[5] = 'a new color' # ... ValueError: Cannot setitem on a Categorical with a new category, set the categories first >>> ccolors = ccolors.cat.add_categories(['a new color']) >>> ccolors.iloc[5] = 'a new color'
如果你想设置值或重塑数据,而非进行新的运算操作,那么Category
类型不是那么有用。