描述
给出一个二维的网格,每一格可以代表墙 2 ,房子 1,以及空 0 (用数字0,1,2来表示),在网格中找到一个位置去建立邮局,使得所有的房子到邮局的距离和是最小的。
返回所有房子到邮局的最小距离和,如果没有地方建立邮局,则返回-1.
- 你不能穿过房子和墙,只能穿过空地。
- 你只能在空地建立邮局。
在线评测地址:领扣题库官网
样例1
输入:[[0,1,0,0,0],[1,0,0,2,1],[0,1,0,0,0]]
输出:8
解释: 在(1,1)处建立邮局,所有房子到邮局的距离和是最小的。
样例2
输入:[[0,1,0],[1,0,1],[0,1,0]]
输出:4
解释:在(1,1)处建立邮局,所有房子到邮局的距离和是最小的。
考点:bfs
题解:
- 本题采用bfs,首次遍历网格,对空地处进行bfs,搜索完成后如果存在房屋没有被vis标记则改空地不可以设置房屋。
- 朴素的bfs搜索过程中,sun+=dist;实现当前点距离和的更新。
-
now.dis+1每次实现当前两点间距离的更新。
class Coordinate {
int x, y;
public Coordinate(int x, int y) {
this.x = x;
this.y = y;
}
}public class Solution { public int EMPTY = 0; public int HOUSE = 1; public int WALL = 2; public int[][] grid; public int n, m; public int[] deltaX = {0, 1, -1, 0}; public int[] deltaY = {1, 0, 0, -1}; private List<Coordinate> getCoordinates(int type) { List<Coordinate> coordinates = new ArrayList<>(); for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (grid[i][j] == type) { coordinates.add(new Coordinate(i, j)); } } } return coordinates; } private void setGrid(int[][] grid) { n = grid.length; m = grid[0].length; this.grid = grid; } private boolean inBound(Coordinate coor) { if (coor.x < 0 || coor.x >= n) { return false; } if (coor.y < 0 || coor.y >= m) { return false; } return grid[coor.x][coor.y] == EMPTY; } /** * @param grid a 2D grid * @return an integer */ public int shortestDistance(int[][] grid) { if (grid == null || grid.length == 0 || grid[0].length == 0) { return -1; } // set n, m, grid setGrid(grid); List<Coordinate> houses = getCoordinates(HOUSE); int[][] distanceSum = new int[n][m]; int[][] visitedTimes = new int[n][m]; for (Coordinate house : houses) { bfs(house, distanceSum, visitedTimes); } int shortest = Integer.MAX_VALUE; List<Coordinate> empties = getCoordinates(EMPTY); for (Coordinate empty : empties) { if (visitedTimes[empty.x][empty.y] != houses.size()) { continue; } shortest = Math.min(shortest, distanceSum[empty.x][empty.y]); } if (shortest == Integer.MAX_VALUE) { return -1; } return shortest; } private void bfs(Coordinate start, int[][] distanceSum, int[][] visitedTimes) { Queue<Coordinate> queue = new LinkedList<>(); boolean[][] hash = new boolean[n][m]; queue.offer(start); hash[start.x][start.y] = true; int steps = 0; while (!queue.isEmpty()) { steps++; int size = queue.size(); for (int temp = 0; temp < size; temp++) { Coordinate coor = queue.poll(); for (int i = 0; i < 4; i++) { Coordinate adj = new Coordinate( coor.x + deltaX[i], coor.y + deltaY[i] ); if (!inBound(adj)) { continue; } if (hash[adj.x][adj.y]) { continue; } queue.offer(adj); hash[adj.x][adj.y] = true; distanceSum[adj.x][adj.y] += steps; visitedTimes[adj.x][adj.y]++; } // direction } // for temp } // while } }
//version 硅谷算法班 public class Solution { /** * @param grid: a 2D grid * @return: An integer */ public int shortestDistance(int[][] grid) { // write your code here if (grid == null || grid.length == 0 || grid[0].length == 0) { return -1; } int ans = Integer.MAX_VALUE; for (int i = 0; i < grid.length; i++) { for (int j = 0; j < grid[0].length; j++) { if (grid[i][j] == 0) { ans = Math.min(ans, bfs(grid, i, j)); } } } return ans == Integer.MAX_VALUE ? -1 : ans; } private int bfs(int[][] grid, int sx, int sy) { Queue<Integer> qx = new LinkedList<>(); Queue<Integer> qy = new LinkedList<>(); boolean[][] v = new boolean[grid.length][grid[0].length]; qx.offer(sx); qy.offer(sy); v[sx][sy] = true; int[] dx = {1, -1, 0, 0}; int[] dy = {0, 0, 1, -1}; int dist = 0; int sum = 0; while (!qx.isEmpty()) { dist++; int size = qx.size(); for (int i = 0; i < size; i++) { int cx = qx.poll(); int cy = qy.poll(); for (int k = 0; k < 4; k++) { int nx = cx + dx[k]; int ny = cy + dy[k]; if (0 <= nx && nx < grid.length && 0 <= ny && ny < grid[0].length && !v[nx][ny]) { v[nx][ny] = true; if (grid[nx][ny] == 1) { sum += dist; } if (grid[nx][ny] == 0) { qx.offer(nx); qy.offer(ny); } } } } } for (int i = 0; i < grid.length; i++) { for (int j = 0; j < grid[0].length; j++) { if (grid[i][j] == 1 && !v[i][j]) { return Integer.MAX_VALUE; } } } return sum; } }