题目链接:uva 261 - The Window Property
题目大意:给定给一个字符串,枚举子串长度k(len≥k≥1),要求在任意k时,有不超过k+1个不同的子串,如果有的话则输出NO,并且输出最早发现不满足的位置。
解题思路:后缀数组,处理出height数组,对于每个k,遍历height数组,碰到小于k的则分段,将整个height分成若干段,即为有多少种长度为k的不同前缀,需要注意的是要跳过前缀长度不足k的。
#include <cstdio>
#include <cstring>
#include <set>
#include <algorithm>
using namespace std;
const int maxn = 10005;
struct Suffix_Arr {
char s[maxn];
int n;
int SA[maxn], height[maxn], rank[maxn];
int tmp_one[maxn], tmp_two[maxn], c[maxn];
bool input ();
void build_suffix(int m);
void get_height();
int check(int k);
}fuck;
int main () {
while (fuck.input()) {
fuck.build_suffix(256);
fuck.get_height();
int ans = maxn;
for (int i = 1; i <= fuck.n; i++)
ans = min(ans, fuck.check(i));
if (ans == maxn)
printf("YES\n");
else
printf("NO:%d\n", ans + 1);
}
return 0;
}
bool Suffix_Arr::input () {
if (!gets(s))
return false;
memset(height, 0, sizeof(height));
n = strlen(s) + 1;
return true;
}
int Suffix_Arr::check(int k) {
int ret = 0;
memset(c, -1, sizeof(c));
for (int i = 1; i < n; i++) {
if (height[i] < k)
ret++;
if (SA[i] > n - k - 1)
continue;
c[SA[i]] = ret;
}
/*
for (int i = 1; i < n; i++)
printf("%d", height[i]);
printf("\n");
for (int i = 1; i < n; i++)
printf("%d", SA[i]);
printf("\n");
for (int i = 0; i < n; i++)
printf("%d", c[i]);
printf("\n");
*/
set<int> g;
ret = 0;
for (int i = 0; i < n; i++) {
if (c[i] == -1)
continue;
if (g.find(c[i]) == g.end()) {
ret++;
g.insert(c[i]);
}
if (ret > k + 1) {
// printf("%d %d!\n", k, i);
return i + k - 1;
}
}
return maxn;
}
void Suffix_Arr::get_height() {
for (int i = 0; i < n; i++)
rank[SA[i]] = i;
int mv = 0;
for (int i = 0; i < n; i++) {
if (mv)
mv--;
if (rank[i] == 0) {
height[rank[i]] = 0;
continue;
}
int j = SA[rank[i]-1];
while (s[i+mv] == s[j+mv])
mv++;
height[rank[i]] = mv;
}
}
void Suffix_Arr::build_suffix(int m) {
int *x = tmp_one, *y = tmp_two;
for (int i = 0; i < m; i++) c[i] = 0;
for (int i = 0; i < n; i++) c[x[i] = s[i]]++;
for (int i = 1; i < m; i++) c[i] += c[i-1];
for (int i = n - 1; i >= 0; i--) SA[--c[x[i]]] = i;
for (int k = 1; k <= n; k <<= 1) {
int mv = 0;
for (int i = n - k; i < n; i++) y[mv++] = i;
for (int i = 0; i < n; i++) if (SA[i] >= k)
y[mv++] = SA[i] - k;
for (int i = 0; i < m; i++) c[i] = 0;
for (int i = 0; i < n; i++) c[x[y[i]]]++;
for (int i = 1; i < m; i++) c[i] += c[i-1];
for (int i = n - 1; i >= 0; i--) SA[--c[x[y[i]]]] = y[i];
swap(x, y);
mv = 1;
x[SA[0]] = 0;
for (int i = 1; i < n; i++)
x[SA[i]] = (y[SA[i-1]] == y[SA[i]] && y[SA[i-1] + k] == y[SA[i] + k] ? mv - 1 : mv++);
if (mv >= n)
break;
m = mv;
}
}