package kata_011; /** * Some numbers have funny properties. For example: * * 89 --> 8¹ + 9² = 89 * 1 * * 695 --> 6² + 9³ + 5⁴= 1390 = 695 * 2 * * 46288 --> 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51 * * Given a positive integer n written as abcd... (a, b, c, d... being digits) * and a positive integer p we want to find a positive integer k, if it exists, * such as the sum of the digits of n taken to the successive powers of p is * equal to k * n. In other words: * * Is there an integer k such as : (a ^ p + b ^ (p+1) + c ^(p+2) + d ^ (p+3) + ...) = n * k * * If it is the case we will return k, if not return -1. * * Note: n, p will always be given as strictly positive integers. * * digPow(89, 1) should return 1 since 8¹ + 9² = 89 = 89 * 1 digPow(92, 1) * should return -1 since there is no k such as 9¹ + 2² equals 92 * k * digPow(695, 2) should return 2 since 6² + 9³ + 5⁴= 1390 = 695 * 2 * digPow(46288, 3) should return 51 since 4³ + 6⁴+ 2⁵ + 8⁶ + 8⁷ = 2360688 = 46288 * 51 * * @author SeeClanUkyo * */ public class DigPow { public static void main(String[] args) { System.out.println(digPow(46288, 3)); } public static long digPow(int n, int p) { // your code if (n > 0) { String nstr = n + ""; int nlen = nstr.length(); long sum = 0; for (int i = 0; i < nlen; i++) { sum += Math.pow(Integer.parseInt(nstr.substring(i, i + 1)), (p + i)); if (sum % n == 0) { return sum / n; } } } return -1; } }
将编程看作是一门艺术,而不单单是个技术。 敲打的英文字符是我的黑白琴键, 思维图纸画出的是我编写的五线谱。 当美妙的华章响起,现实通往二进制的大门即将被打开。