项目场景:
https://blog.csdn.net/zphuangtang/article/details/117262848
Input contains NaN, infinity or a value too large for dtype('float64').
昨天处理好的数据,今天进行实验的时候出错了
问题描述:
使用imblearn进行随机上采样时发生错误
from imblearn.over_sampling import RandomOverSampler
import pandas as pd
import os
ros = RandomOverSampler(random_state=0)
train_root = '/data/file/classification_data/2012-2019/sum_droped/'
# pandas DataFrame
train_data = pd.read_csv(os.path.join(train_root, 'train_sum_2017.csv'), index_col=0)
train_label = pd.read_csv(os.path.join(train_root, 'label_sum_2017.csv'), index_col=0)
train_data_re, train_label_re = ros.fit_resample(train_data, train_label)
出错在最后一句:
train_data_re, train_label_re = ros.fit_resample(train_data, train_label)
完整错误:
ValueError Traceback (most recent call last)<ipython-input-58-a2ca54a0cd7f> in <module>()
1
----> 2 train_data_re, train_label_re = ros.fit_resample(train_data, train_label)
3
~/anaconda3/envs/dataAna/lib/python3.6/site-packages/imblearn/base.py in fit_resample(self, X, y)
73 The corresponding label of `X_resampled`.
74 """
---> 75 check_classification_targets(y)
76 arrays_transformer = ArraysTransformer(X, y)
77 X, y, binarize_y = self._check_X_y(X, y)
~/anaconda3/envs/dataAna/lib/python3.6/site-packages/sklearn/utils/multiclass.py in check_classification_targets(y)
178 y : array-like
179 """
--> 180 y_type = type_of_target(y)
181 if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',
182 'multilabel-indicator', 'multilabel-sequences']:
~/anaconda3/envs/dataAna/lib/python3.6/site-packages/sklearn/utils/multiclass.py in type_of_target(y)
301 if y.dtype.kind == 'f' and np.any(y != y.astype(int)):
302 # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.]
--> 303 _assert_all_finite(y)
304 return 'continuous' + suffix
305
~/anaconda3/envs/dataAna/lib/python3.6/site-packages/sklearn/utils/validation.py in _assert_all_finite(X, allow_nan, msg_dtype)
104 msg_err.format
105 (type_err,
--> 106 msg_dtype if msg_dtype is not None else X.dtype)
107 )
108 # for object dtype data, we only check for NaNs (GH-13254)
ValueError: Input contains NaN, infinity or a value too large for dtype('float64').
原因分析:
随机上采样的数据类型对数据类型有要求,这里我去查看我的数据类型
print(train_data.dtypes)
0.1 float64
1 float64
2 float64
3 float64
4 float64
...
443 float64
444 float64
445 float64
446 float64
447 float64
应该都是float64数据类型, 中间还有些看不到。
print((train_data.dtypes != 'float64').sum())
输出20
应该是中间有一些数据的类型不是float64类型。
现在要重新对数据进行排查
解决方案:
对数据处理时将数据类型修改一下