loss
loss越小越好
- 计算实际输出和目标之间的差距
- 为我们更新输出提供一定的依据(反向传播)
调用torch中已有损失函数:
result_loss = loss(output, target)
backward
反向传播:计算每一个参数的梯度
result_loss.backward()
优化器
注意:需要清除之前的梯度值
实例
import torch.optim
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
# 准备数据集
dataset = torchvision.datasets.CIFAR10("../pytorch_learn/dataset2", train=False, transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=1)
# 创建一个神经网络
class lh(nn.Module):
def __init__(self):
super(lh, self).__init__()
# sequential用法
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(kernel_size=2),
Conv2d(in_channels=32, out_channels=32, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Conv2d(in_channels=32, out_channels=64, kernel_size=5, padding=2),
MaxPool2d(kernel_size=2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = nn.CrossEntropyLoss()
# 网络
lh = lh()
# 优化器
optim = torch.optim.SGD(lh.parameters(), lr=0.01)
for epoch in range(20):
running_loss = 0.0
for data in dataloader:
img, target = data
# 网络输出
output = lh(img)
# loss
result_loss = loss(output, target)
# 清除之前的梯度
optim.zero_grad()
# 梯度
result_loss.backward()
# 优化
optim.step()
running_loss = running_loss + result_loss
print(running_loss)