这一章中我们来看Wifi Display连接过程的建立,包含P2P的部分和RTSP的部分,首先来大致看一下Wifi Display规范相关的东西。
HIDC: Human Interface Device Class (遵循HID标准的设备类)
UIBC: User Input Back Channel (UIBC分为两种,一种是Generic,包含鼠标、键盘等;另一种是HIDC,HID是一个规范,只有遵循HID的标准,都可以叫做HID设备,包含USB鼠标、键盘、蓝牙、红外等)
PES: Packetized Elementary Stream (数字电视基本码流)
HDCP: High-bandwidth Digital Content Protection (加密方式,用于加密传输的MPEG2-TS流)
MPEG2-TS: Moving Picture Experts Group 2 Transport Stream (Wifi display之间传输的是MPEG2-TS流)
RTSP: Real-Time Streaming Protocol (Wifi display通过RTSP协议来交互两边的能力)
RTP: Real-time Transport Protocol (Wifi display通过RTP来传输MPEG2-TS流)
Wi-Fi P2P: Wi-Fi Direct
TDLS: Tunneled Direct Link Setup (另一种方式建立两台设备之间的直连,与P2P类似,但要借助一台AP)
另一种比较重要的概念是在Wifi Display中分为Source和Sink两种角色,如下图。Source是用于encode并输出TS流;Sink用于decode并显示TS流。相当于Server/Client架构中,Source就是Server,用于提供服务;Sink就是Client。当然,我们这篇文章主要介绍在Android上Wifi display Source的流程。
从上面的架构图我们可以看到,Wifi display是建立在TCP/UDP上面的应用层协议,L2链路层是通过P2P和TDLS两种方式建立,TDLS是optional的。在L2层建立连接后,Source就会在一个特定的port上listen,等待client的TCP连接。当与Client建立了TCP连接后,就会有M1~M7七个消息的交互,用户获取对方设备的能力,包括视频编码能力、Audio输出能力、是否支持HDCP加密等等。在获取这些能力之后,Source就会选择一种视频编码格式以及Audio格式用于这次会话当中。当一个RTSP会话建立后,双方就会决定出用于传输TS流的RTP port,RTP协议是基于UDP的。当这些都准备好后,Sink设备就会发送M7消息,也就是Play给Source,双方就可以开始传输数据了。
关于M1~M7是什么,我们后面再来介绍。首先我们来介绍在Android WifiDisplay中如何建立P2P的连接。
WifiDisplay之P2P的建立
private void pairWifiDisplay(WifiDisplay display) { if (display.canConnect()) { mDisplayManager.connectWifiDisplay(display.getDeviceAddress()); } }
WifiDisplaySettings通过AIDL调用到DisplayManagerService的connectWifiDisplay方法,关于AIDL的调用过程这里不讲了,直接到DisplayManagerService的connectWifiDisplay方法来看:
public void connectWifiDisplay(String address) { if (address == null) { throw new IllegalArgumentException("address must not be null"); } mContext.enforceCallingOrSelfPermission(Manifest.permission.CONFIGURE_WIFI_DISPLAY, "Permission required to connect to a wifi display"); final long token = Binder.clearCallingIdentity(); try { synchronized (mSyncRoot) { if (mWifiDisplayAdapter != null) { mWifiDisplayAdapter.requestConnectLocked(address); } } } finally { Binder.restoreCallingIdentity(token); } }
首先做参数的检查,即MAC地址不能为空,然后做权限检查,调用这个方法的application必须要在manifest中声明有CONFIGURE_WIFI_DISPLAY权限,最后直接调用WifiDisplayAdapter的requestConnectLocked方法:
public void requestConnectLocked(final String address) { if (DEBUG) { Slog.d(TAG, "requestConnectLocked: address=" + address); } getHandler().post(new Runnable() { @Override public void run() { if (mDisplayController != null) { mDisplayController.requestConnect(address); } } }); }
这里比较简单,直接调用WifiDisplayController的requestConnect方法。前面都是直接的调用,最终做事情的还是WifiDisplayController。
public void requestConnect(String address) { for (WifiP2pDevice device : mAvailableWifiDisplayPeers) { if (device.deviceAddress.equals(address)) { connect(device); } } } private void connect(final WifiP2pDevice device) { if (mDesiredDevice != null && !mDesiredDevice.deviceAddress.equals(device.deviceAddress)) { if (DEBUG) { Slog.d(TAG, "connect: nothing to do, already connecting to " + describeWifiP2pDevice(device)); } return; } if (mConnectedDevice != null && !mConnectedDevice.deviceAddress.equals(device.deviceAddress) && mDesiredDevice == null) { if (DEBUG) { Slog.d(TAG, "connect: nothing to do, already connected to " + describeWifiP2pDevice(device) + " and not part way through " + "connecting to a different device."); } return; } if (!mWfdEnabled) { Slog.i(TAG, "Ignoring request to connect to Wifi display because the " +" feature is currently disabled: " + device.deviceName); return; } mDesiredDevice = device; mConnectionRetriesLeft = CONNECT_MAX_RETRIES; updateConnection(); }
requestConnect先从mAvaiableWifiDsiplayPeers中通过Mac地址找到所有连接的WifiP2pDevice,然后调用connect方法,在connect方法中会做一系列的判断,看首先是否有正在连接中或者断开中的设备,如果有就直接返回;再看有没有已经连接上的设备,如果有,也直接返回,然后赋值mDesiredDevice为这次要连接的设备,最后调用updateConnection来更新连接状态并发起连接。updateConnection的代码比较长,我们分段来分析:
private void updateConnection() { //更新是否需要scan或者停止scan updateScanState(); //如果有已经连接上的RemoteDisplay,先断开。这里先不看 if (mRemoteDisplay != null && mConnectedDevice != mDesiredDevice) { } // 接上面的一步,段开这个group if (mDisconnectingDevice != null) { return; // wait for asynchronous callback } if (mConnectedDevice != null && mConnectedDevice != mDesiredDevice) { } // 如果有正在连接的设备,先停止连接之前的设备 if (mCancelingDevice != null) { return; // wait for asynchronous callback } if (mConnectingDevice != null && mConnectingDevice != mDesiredDevice) { } // 当断开之前的连接或者启动匿名GROUP时,这里就结束了 if (mDesiredDevice == null) { } // 开始连接,这是我们要看的重点 if (mConnectedDevice == null && mConnectingDevice == null) { Slog.i(TAG, "Connecting to Wifi display: " + mDesiredDevice.deviceName); mConnectingDevice = mDesiredDevice; WifiP2pConfig config = new WifiP2pConfig(); WpsInfo wps = new WpsInfo(); if (mWifiDisplayWpsConfig != WpsInfo.INVALID) { wps.setup = mWifiDisplayWpsConfig; } else if (mConnectingDevice.wpsPbcSupported()) { wps.setup = WpsInfo.PBC; } else if (mConnectingDevice.wpsDisplaySupported()) { wps.setup = WpsInfo.KEYPAD; } else { wps.setup = WpsInfo.DISPLAY; } config.wps = wps; config.deviceAddress = mConnectingDevice.deviceAddress; config.groupOwnerIntent = WifiP2pConfig.MIN_GROUP_OWNER_INTENT; WifiDisplay display = createWifiDisplay(mConnectingDevice); advertiseDisplay(display, null, 0, 0, 0); final WifiP2pDevice newDevice = mDesiredDevice; mWifiP2pManager.connect(mWifiP2pChannel, config, new ActionListener() { @Override public void onSuccess() { Slog.i(TAG, "Initiated connection to Wifi display: " + newDevice.deviceName); mHandler.postDelayed(mConnectionTimeout, CONNECTION_TIMEOUT_SECONDS * 1000); } @Override public void onFailure(int reason) { if (mConnectingDevice == newDevice) { Slog.i(TAG, "Failed to initiate connection to Wifi display: " + newDevice.deviceName + ", reason=" + reason); mConnectingDevice = null; handleConnectionFailure(false); } } }); return; }
这段函数比较长,我们先看我们需要的,剩下的后面再来分析。首先赋值给mConnectingDevice表示当前正在连接的设备,然后构造一个WifiP2pConfig对象,这个对象包含这次连接的设备的Mac地址、wps方式以及我们自己的GROUP_OWNER intent值,然后调用advertieseDisplay方法来通知WifiDisplayAdapter相关状态的改变,WifiDisplayAdapter会发送相应的broadcast出来,这是WifiDisplaySettings可以接收这些broadcast,然后在UI上更新相应的状态。关于advertieseDisplay的实现,我们后面再来分析。
} else if (action.equals(WifiP2pManager.WIFI_P2P_CONNECTION_CHANGED_ACTION)) { NetworkInfo networkInfo = (NetworkInfo)intent.getParcelableExtra( WifiP2pManager.EXTRA_NETWORK_INFO); if (DEBUG) { Slog.d(TAG, "Received WIFI_P2P_CONNECTION_CHANGED_ACTION: networkInfo=" + networkInfo); } handleConnectionChanged(networkInfo); private void handleConnectionChanged(NetworkInfo networkInfo) { mNetworkInfo = networkInfo; if (mWfdEnabled && networkInfo.isConnected()) { if (mDesiredDevice != null || mWifiDisplayCertMode) { mWifiP2pManager.requestGroupInfo(mWifiP2pChannel, new GroupInfoListener() { @Override public void onGroupInfoAvailable(WifiP2pGroup info) { if (DEBUG) { Slog.d(TAG, "Received group info: " + describeWifiP2pGroup(info)); } if (mConnectingDevice != null && !info.contains(mConnectingDevice)) { Slog.i(TAG, "Aborting connection to Wifi display because " + "the current P2P group does not contain the device " + "we expected to find: " + mConnectingDevice.deviceName + ", group info was: " + describeWifiP2pGroup(info)); handleConnectionFailure(false); return; } if (mDesiredDevice != null && !info.contains(mDesiredDevice)) { disconnect(); return; } if (mConnectingDevice != null && mConnectingDevice == mDesiredDevice) { Slog.i(TAG, "Connected to Wifi display: " + mConnectingDevice.deviceName); mHandler.removeCallbacks(mConnectionTimeout); mConnectedDeviceGroupInfo = info; mConnectedDevice = mConnectingDevice; mConnectingDevice = null; updateConnection(); } } }); } }
当WifiDisplayController收到WIFI_P2P_CONNECTION_CHANGED_ACTION广播后,会调用handleConnectionChanged来获取当前P2P Group相关的信息,如果获取到的P2P Group信息里面没有mConnectingDevice或者mDesiredDevice的信息,则表示连接出错了,直接退出。如果当前连接信息与前面设置的mConnectingDevice一直,则表示连接P2P成功,这里首先会移除前面设置的连接timeout的callback,然后设置mConnectedDevice为当前连接的设备,并设置mConnectingDevice为空,最后调用updateConnection来更新连接状态信息。我们又回到updateConnection这个函数了,但这次进入的分支与之前连接请求的分支又不同了,我们来看代码:
private void updateConnection() { // 更新是否需要scan或者停止scan updateScanState(); // 如果有连接上的RemoteDisplay,这里先断开 if (mRemoteDisplay != null && mConnectedDevice != mDesiredDevice) { } // 接着上面的一步,先断开之前连接的设备 if (mDisconnectingDevice != null) { return; // wait for asynchronous callback } if (mConnectedDevice != null && mConnectedDevice != mDesiredDevice) { } // 如果有正在连接的设备,先断开之前连接的设备 if (mCancelingDevice != null) { return; // wait for asynchronous callback } if (mConnectingDevice != null && mConnectingDevice != mDesiredDevice) { } // 当断开之前的连接或者匿名GO时,这里就结束了 if (mDesiredDevice == null) { } // 如果有连接请求,则进入此 if (mConnectedDevice == null && mConnectingDevice == null) { } // 当连接上P2P后,就进入到此 if (mConnectedDevice != null && mRemoteDisplay == null) { Inet4Address addr = getInterfaceAddress(mConnectedDeviceGroupInfo); if (addr == null) { Slog.i(TAG, "Failed to get local interface address for communicating " + "with Wifi display: " + mConnectedDevice.deviceName); handleConnectionFailure(false); return; // done } mWifiP2pManager.setMiracastMode(WifiP2pManager.MIRACAST_SOURCE); final WifiP2pDevice oldDevice = mConnectedDevice; final int port = getPortNumber(mConnectedDevice); final String iface = addr.getHostAddress() + ":" + port; mRemoteDisplayInterface = iface; Slog.i(TAG, "Listening for RTSP connection on " + iface + " from Wifi display: " + mConnectedDevice.deviceName); mRemoteDisplay = RemoteDisplay.listen(iface, new RemoteDisplay.Listener() { @Override public void onDisplayConnected(Surface surface, int width, int height, int flags, int session) { if (mConnectedDevice == oldDevice && !mRemoteDisplayConnected) { Slog.i(TAG, "Opened RTSP connection with Wifi display: " + mConnectedDevice.deviceName); mRemoteDisplayConnected = true; mHandler.removeCallbacks(mRtspTimeout); if (mWifiDisplayCertMode) { mListener.onDisplaySessionInfo( getSessionInfo(mConnectedDeviceGroupInfo, session)); } final WifiDisplay display = createWifiDisplay(mConnectedDevice); advertiseDisplay(display, surface, width, height, flags); } } @Override public void onDisplayDisconnected() { if (mConnectedDevice == oldDevice) { Slog.i(TAG, "Closed RTSP connection with Wifi display: " + mConnectedDevice.deviceName); mHandler.removeCallbacks(mRtspTimeout); disconnect(); } } @Override public void onDisplayError(int error) { if (mConnectedDevice == oldDevice) { Slog.i(TAG, "Lost RTSP connection with Wifi display due to error " + error + ": " + mConnectedDevice.deviceName); mHandler.removeCallbacks(mRtspTimeout); handleConnectionFailure(false); } } }, mHandler); // Use extended timeout value for certification, as some tests require user inputs int rtspTimeout = mWifiDisplayCertMode ? RTSP_TIMEOUT_SECONDS_CERT_MODE : RTSP_TIMEOUT_SECONDS; mHandler.postDelayed(mRtspTimeout, rtspTimeout * 1000); } }
WifiDisplay之RTSP server的创建
public static RemoteDisplay listen(String iface, Listener listener, Handler handler) { if (iface == null) { throw new IllegalArgumentException("iface must not be null"); } if (listener == null) { throw new IllegalArgumentException("listener must not be null"); } if (handler == null) { throw new IllegalArgumentException("handler must not be null"); } RemoteDisplay display = new RemoteDisplay(listener, handler); display.startListening(iface); return display; }
这里首先进行参数的检查,然后创建一个RemoteDisplay对象(这里不能直接创建RemoteDisplay对象,因为它的构造函数是private的),接着调用RemoteDisplay的startListening方法:
private void startListening(String iface) { mPtr = nativeListen(iface); if (mPtr == 0) { throw new IllegalStateException("Could not start listening for " + "remote display connection on \"" + iface + "\""); } mGuard.open("dispose"); }
nativeListen会调用JNI中的实现,相关代码在android_media_RemoteDisplay.cpp中。注意上面的mGuard是CloseGuard对象,是一种用于显示释放一些资源的机制。
static jint nativeListen(JNIEnv* env, jobject remoteDisplayObj, jstring ifaceStr) { ScopedUtfChars iface(env, ifaceStr); sp<IServiceManager> sm = defaultServiceManager(); sp<IMediaPlayerService> service = interface_cast<IMediaPlayerService>( sm->getService(String16("media.player"))); if (service == NULL) { ALOGE("Could not obtain IMediaPlayerService from service manager"); return 0; } sp<NativeRemoteDisplayClient> client(new NativeRemoteDisplayClient(env, remoteDisplayObj)); sp<IRemoteDisplay> display = service->listenForRemoteDisplay( client, String8(iface.c_str())); if (display == NULL) { ALOGE("Media player service rejected request to listen for remote display ‘%s‘.", iface.c_str()); return 0; } NativeRemoteDisplay* wrapper = new NativeRemoteDisplay(display, client); return reinterpret_cast<jint>(wrapper); }
上面的代码中先从ServiceManager中获取MediaPlayerService的Bpbinder引用,然后由传入的第二个参数remoteDisplayObj,也就是RemoteDisplay对象构造一个NativeRemoteDisplayClient,在framework中,我们经常看到像这样的用法,类似于设计模式中的包装模式,例如在framework中对Java层的BnBinder也是做了一层封装JavaBBinder。在NativeRemoteDisplayClient中通过JNI的反向调用,就可以直接回调RemoteDisplay中的一些函数,实现回调方法了,下面来看它的实现:
class NativeRemoteDisplayClient : public BnRemoteDisplayClient { public: NativeRemoteDisplayClient(JNIEnv* env, jobject remoteDisplayObj) : mRemoteDisplayObjGlobal(env->NewGlobalRef(remoteDisplayObj)) { } protected: ~NativeRemoteDisplayClient() { JNIEnv* env = AndroidRuntime::getJNIEnv(); env->DeleteGlobalRef(mRemoteDisplayObjGlobal); } public: virtual void onDisplayConnected(const sp<IGraphicBufferProducer>& bufferProducer, uint32_t width, uint32_t height, uint32_t flags, uint32_t session) { env->CallVoidMethod(mRemoteDisplayObjGlobal, gRemoteDisplayClassInfo.notifyDisplayConnected, surfaceObj, width, height, flags, session); } virtual void onDisplayDisconnected() { } virtual void onDisplayError(int32_t error) { } private: jobject mRemoteDisplayObjGlobal; static void checkAndClearExceptionFromCallback(JNIEnv* env, const char* methodName) { } } };
在NativeRemoteDisplayClient的构造函数中,把RemoteDisplay对象先保存到mRemoteDisplayObjGlobal中,可以看到上面主要实现了三个回调函数,onDisplayConnected、onDisplayDisconnected、onDisplayError,这三个回调函数对应到RemoteDisplay类的notifyDisplayConnected、notifyDisplayDisconnected和notifyDisplayError三个方法。接着回到nativeListen中,接着会调用MediaPlayerService的listenForRemoteDisplay方法去监听socket连接,这个方法是返回一个RemoteDisplay对象,当然经过binder的调用,最终返回到nativeListen的是BpRemoteDisplay对象,然后会由这个BpRemoteDisplay对象构造一个NativeRemoteDisplay对象并把它的指针地址返回给上层RemoteDisplay使用。
class NativeRemoteDisplay { public: NativeRemoteDisplay(const sp<IRemoteDisplay>& display, const sp<NativeRemoteDisplayClient>& client) : mDisplay(display), mClient(client) { } ~NativeRemoteDisplay() { mDisplay->dispose(); } void pause() { mDisplay->pause(); } void resume() { mDisplay->resume(); } private: sp<IRemoteDisplay> mDisplay; sp<NativeRemoteDisplayClient> mClient; };
来看一下这时Java层的RemoteDisplay和Native层RemoteDisplay之间的关系:
sp<IRemoteDisplay> MediaPlayerService::listenForRemoteDisplay( const sp<IRemoteDisplayClient>& client, const String8& iface) { if (!checkPermission("android.permission.CONTROL_WIFI_DISPLAY")) { return NULL; } return new RemoteDisplay(client, iface.string()); }
首先进行权限的检查,然后创建一个RemoteDisplay对象(注意现在已经在C++层了),这里看RemoteDisplay.cpp文件。RemoteDisplay继承于BnRemoteDisplay,并实现BnRemoteDisplay中的一些方法,有兴趣的可以去看一下IRemoteDisplay的实现。接下来来看RemoteDisplay的构造函数:
RemoteDisplay::RemoteDisplay( const sp<IRemoteDisplayClient> &client, const char *iface) : mLooper(new ALooper), mNetSession(new ANetworkSession) { mLooper->setName("wfd_looper"); mSource = new WifiDisplaySource(mNetSession, client); mLooper->registerHandler(mSource); mNetSession->start(); mLooper->start(); mSource->start(iface); }
ALooper::ALooper() : mRunningLocally(false) { } void ALooper::setName(const char *name) { mName = name; } ALooper::handler_id ALooper::registerHandler(const sp<AHandler> &handler) { return gLooperRoster.registerHandler(this, handler); }
这三个方法都比较简单,我们看LooperRoster的registerHandler方法:
ALooper::handler_id ALooperRoster::registerHandler( const sp<ALooper> looper, const sp<AHandler> &handler) { Mutex::Autolock autoLock(mLock); if (handler->id() != 0) { CHECK(!"A handler must only be registered once."); return INVALID_OPERATION; } HandlerInfo info; info.mLooper = looper; info.mHandler = handler; ALooper::handler_id handlerID = mNextHandlerID++; mHandlers.add(handlerID, info); handler->setID(handlerID); return handlerID; }
这里为每一个注册的AHandler分配一个handlerID,并且把注册的AHandler保存在mHandlers列表中,后面使用时,就可以快速的通过HandlerID找到对应的AHandler以及ALooper了。注意这里HandlerInfo结构中的mLooper和mHander都是是wp,是一个弱引用,在使用中必须调用其promote方法获取sp指针才能使用。再回到RemoteDisplay的构造函数中看ALooper的start方法:
status_t ALooper::start( bool runOnCallingThread, bool canCallJava, int32_t priority) { if (runOnCallingThread) { } Mutex::Autolock autoLock(mLock); mThread = new LooperThread(this, canCallJava); status_t err = mThread->run( mName.empty() ? "ALooper" : mName.c_str(), priority); if (err != OK) { mThread.clear(); } return err; }
这里的runOnCallingThread会根据默认形参为false,所以会新建一个LooperThread来不断的做循环,LooperThread是继承于Thread,并实现它的readyToRun和threadLoop方法,在threadLoop方法中去调用ALooper的loop方法,代码如下:
virtual bool threadLoop() { return mLooper->loop(); } bool ALooper::loop() { Event event; { Mutex::Autolock autoLock(mLock); if (mEventQueue.empty()) { mQueueChangedCondition.wait(mLock); return true; } int64_t whenUs = (*mEventQueue.begin()).mWhenUs; int64_t nowUs = GetNowUs(); if (whenUs > nowUs) { int64_t delayUs = whenUs - nowUs; mQueueChangedCondition.waitRelative(mLock, delayUs * 1000ll); return true; } event = *mEventQueue.begin(); mEventQueue.erase(mEventQueue.begin()); } gLooperRoster.deliverMessage(event.mMessage); return true; }
在loop方法中,不断的从mEventQueue取出消息,并dispatch给LooperRoster处理,mEventQueue是一个list链表,其元素都是Event结构,Event结构又包含消息处理的时间以及消息本身AMessage。再来看ALooperRoster的deliverMessage方法:
void ALooperRoster::deliverMessage(const sp<AMessage> &msg) { sp<AHandler> handler; { Mutex::Autolock autoLock(mLock); ssize_t index = mHandlers.indexOfKey(msg->target()); if (index < 0) { ALOGW("failed to deliver message. Target handler not registered."); return; } const HandlerInfo &info = mHandlers.valueAt(index); handler = info.mHandler.promote(); if (handler == NULL) { ALOGW("failed to deliver message. " "Target handler %d registered, but object gone.", msg->target()); mHandlers.removeItemsAt(index); return; } } handler->onMessageReceived(msg); }
这里首先通过AMessage的target找到需要哪个AHandler处理,然后调用这个AHandler的onMessageReceived去处理这个消息。注意前面的info.mHandler.promote()用于当前AHandler的强引用指针,也可以用来判断当前AHandler是否还存活在。由前面的知识我们知道,这里会调用到WifiDisplaySource的onMessageReceived方法,至于这些消息如何被处理,我们后面再来分析。再回到RemoteDisplay的构造函数中,ANetworkSession用于处理与网络请求相关的工作,比如创建socket,从socket中收发数据,当然这些工作都是由WifiDisplaySource控制的,我们先来看ANetworkSession的构造方法和start方法:
ANetworkSession::ANetworkSession() : mNextSessionID(1) { mPipeFd[0] = mPipeFd[1] = -1; } status_t ANetworkSession::start() { if (mThread != NULL) { return INVALID_OPERATION; } int res = pipe(mPipeFd); if (res != 0) { mPipeFd[0] = mPipeFd[1] = -1; return -errno; } mThread = new NetworkThread(this); status_t err = mThread->run("ANetworkSession", ANDROID_PRIORITY_AUDIO); if (err != OK) { mThread.clear(); close(mPipeFd[0]); close(mPipeFd[1]); mPipeFd[0] = mPipeFd[1] = -1; return err; } return OK; }
在start方法中,首先创建一个管道,这里创建的管理主要用于让ANetworkSession不断的做select循环,当有事务要处理时,就从select中跳出来处理,我们后面会分析到具体的代码。接着创建一个NetworkThread,NetworkThread也是继承于Thread,并实现threadLoop方法,在threadLoop方法中只是简单的调用ANetworkSession的threadLoop方法,我们来分析threadLoop方法:
void ANetworkSession::threadLoop() { fd_set rs, ws; FD_ZERO(&rs); FD_ZERO(&ws); FD_SET(mPipeFd[0], &rs); int maxFd = mPipeFd[0]; { Mutex::Autolock autoLock(mLock); for (size_t i = 0; i < mSessions.size(); ++i) { const sp<Session> &session = mSessions.valueAt(i); int s = session->socket(); if (s < 0) { continue; } if (session->wantsToRead()) { FD_SET(s, &rs); if (s > maxFd) { maxFd = s; } } if (session->wantsToWrite()) { FD_SET(s, &ws); if (s > maxFd) { maxFd = s; } } } } int res = select(maxFd + 1, &rs, &ws, NULL, NULL /* tv */); if (res == 0) { return; } if (res < 0) { if (errno == EINTR) { return; } ALOGE("select failed w/ error %d (%s)", errno, strerror(errno)); return; } }
这个函数比较长,我们分段来看,首先看select前半段部分,首先将mPipeFd[0]作为select监听的一个fd。然后循环的从mSessions中取出各个子Session(Session即为一个回话,在RTSP中当双方连接好TCP连接,并交互完Setup以后,就表示一个回话建立成功了,在RTSP中,可以在一对Server & Client之间建立多个回话,用于传输不同的数据),并通过socket类型添加到ReadFd和WirteFd中,最后调用select去等待是否有可读或者可写的事件发生。mSessions是一个KeyedVector,保存所有的Session及其SessionID,方便查找。关于Session何时创建,如何创建,我们后面再来分析。
WifiDisplaySource::WifiDisplaySource( const sp<ANetworkSession> &netSession, const sp<IRemoteDisplayClient> &client, const char *path) : mState(INITIALIZED), mNetSession(netSession), mClient(client), mSessionID(0), mStopReplyID(0), mChosenRTPPort(-1), mUsingPCMAudio(false), mClientSessionID(0), mReaperPending(false), mNextCSeq(1), mUsingHDCP(false), mIsHDCP2_0(false), mHDCPPort(0), mHDCPInitializationComplete(false), mSetupTriggerDeferred(false), mPlaybackSessionEstablished(false) { if (path != NULL) { mMediaPath.setTo(path); } mSupportedSourceVideoFormats.disableAll(); mSupportedSourceVideoFormats.setNativeResolution( VideoFormats::RESOLUTION_CEA, 5); // 1280x720 p30 // Enable all resolutions up to 1280x720p30 mSupportedSourceVideoFormats.enableResolutionUpto( VideoFormats::RESOLUTION_CEA, 5, VideoFormats::PROFILE_CHP, // Constrained High Profile VideoFormats::LEVEL_32); // Level 3.2 }
VideoFormats::VideoFormats() { memcpy(mConfigs, mResolutionTable, sizeof(mConfigs)); for (size_t i = 0; i < kNumResolutionTypes; ++i) { mResolutionEnabled[i] = 0; } setNativeResolution(RESOLUTION_CEA, 0); // default to 640x480 p60 }
mResolutionTable是按照Wifi Display 规范定义好的一个3*32数组,里面的元素是config_t类型:
struct config_t { size_t width, height, framesPerSecond; bool interlaced; unsigned char profile, level; };
config_t包含了长、宽、帧率、隔行视频、profile和H.264 level。然后在构造函数中,对mResolutionEnabled[]数组全部置为0,mResolutionEnabled数组有三个元素,分别对应CEA、VESA、HH被选取的位,如果在mConfigs数组中相应的格式被选取,就会置mResolutionEnabled对应的位为1;相反取消支持一种格式时,相应的位就被置为0。在来看setNativeResolution:
void VideoFormats::setNativeResolution(ResolutionType type, size_t index) { CHECK_LT(type, kNumResolutionTypes); CHECK(GetConfiguration(type, index, NULL, NULL, NULL, NULL)); mNativeType = type; mNativeIndex = index; setResolutionEnabled(type, index); }
首先做参数检查,检查输入的type和index是否合法,然后调用setResolutionEnabled去设置mResolutionEnabled和mConfigs中的相应的值:
void VideoFormats::setResolutionEnabled( ResolutionType type, size_t index, bool enabled) { CHECK_LT(type, kNumResolutionTypes); CHECK(GetConfiguration(type, index, NULL, NULL, NULL, NULL)); if (enabled) { mResolutionEnabled[type] |= (1ul << index); mConfigs[type][index].profile = (1ul << PROFILE_CBP); mConfigs[type][index].level = (1ul << LEVEL_31); } else { mResolutionEnabled[type] &= ~(1ul << index); mConfigs[type][index].profile = 0; mConfigs[type][index].level = 0; } }
这里首先还是做参数的检查,由默认形参我们知道,enable是true,则设置mResolutionEnabled相应type中的对应格式为1,并设置mConfigs中的profile和level值为CBP和Level 3.1。这里设置640*480 p60是因为在Wifi Display规范中,这个格式是必须要强制支持的,在Miracast认证中,这种格式也会被测试到。然后回到WifiDisplaySource的构造函数中,接下来会调用setNativeResolution去设置当前系统支持的默认格式为1280*720 p30,并调用enableResolutionUpto去将1280*720 p30以上的格式都设置为支持:
void VideoFormats::enableResolutionUpto( ResolutionType type, size_t index, ProfileType profile, LevelType level) { size_t width, height, fps, score; bool interlaced; if (!GetConfiguration(type, index, &width, &height, &fps, &interlaced)) { ALOGE("Maximum resolution not found!"); return; } score = width * height * fps * (!interlaced + 1); for (size_t i = 0; i < kNumResolutionTypes; ++i) { for (size_t j = 0; j < 32; j++) { if (GetConfiguration((ResolutionType)i, j, &width, &height, &fps, &interlaced) && score >= width * height * fps * (!interlaced + 1)) { setResolutionEnabled((ResolutionType)i, j); setProfileLevel((ResolutionType)i, j, profile, level); } } } }
这里采用width * height * fps * (!interlaced + 1)的方式去计算一个score值,然后遍历所有的mResolutionTable中的值去检查是否计算到的值比当前score要高,如果大于当前score值,就将这种分辨率enable,并设置mConfigs中对应分辨率的profile和H.264 level为CHP和Level 3.2。到这里WifiDisplaySource的构造函数分析完了,接着回到RemoteDisplay构造函数中,它会调用WifiDisplaySource的start方法,参数是的"ip:rtspPort":
status_t WifiDisplaySource::start(const char *iface) { CHECK_EQ(mState, INITIALIZED); sp<AMessage> msg = new AMessage(kWhatStart, id()); msg->setString("iface", iface); sp<AMessage> response; return PostAndAwaitResponse(msg, &response); } static status_t PostAndAwaitResponse( const sp<AMessage> &msg, sp<AMessage> *response) { status_t err = msg->postAndAwaitResponse(response); if (err != OK) { return err; } if (response == NULL || !(*response)->findInt32("err", &err)) { err = OK; } return err; }
在start函数中,构造一个AMessage,消息种类是kWhatStart,id()返回在ALooperRoster注册的handlerID值,ALooperRoster通过handlerID值可以快速找到对应的AHandler,我们知道,这里的id()返回WifiDisplaySource这个AHander的id值,这个消息最终也会被WifiDisplaySource的onMessageReceived方法处理。首先来看AMessage的postAndAwaitResponse方法:
status_t AMessage::postAndAwaitResponse(sp<AMessage> *response) { return gLooperRoster.postAndAwaitResponse(this, response); }
status_t ALooperRoster::postAndAwaitResponse( const sp<AMessage> &msg, sp<AMessage> *response) { Mutex::Autolock autoLock(mLock); uint32_t replyID = mNextReplyID++; msg->setInt32("replyID", replyID); status_t err = postMessage_l(msg, 0 /* delayUs */); if (err != OK) { response->clear(); return err; } ssize_t index; while ((index = mReplies.indexOfKey(replyID)) < 0) { mRepliesCondition.wait(mLock); } *response = mReplies.valueAt(index); mReplies.removeItemsAt(index); return OK; }
首先会为每个需要reply的消息赋予一个replyID,后面会根据这个replyID去mReplies找到对应的response。再来看postMessage_l的实现:
status_t ALooperRoster::postMessage_l( const sp<AMessage> &msg, int64_t delayUs) { ssize_t index = mHandlers.indexOfKey(msg->target()); if (index < 0) { ALOGW("failed to post message ‘%s‘. Target handler not registered.", msg->debugString().c_str()); return -ENOENT; } const HandlerInfo &info = mHandlers.valueAt(index); sp<ALooper> looper = info.mLooper.promote(); if (looper == NULL) { ALOGW("failed to post message. " "Target handler %d still registered, but object gone.", msg->target()); mHandlers.removeItemsAt(index); return -ENOENT; } looper->post(msg, delayUs); return OK; }
首先从mHandler数组中找到当前AMessage对应的ALooper,然后调用ALooper的post方法,来看一下实现:
void ALooper::post(const sp<AMessage> &msg, int64_t delayUs) { Mutex::Autolock autoLock(mLock); int64_t whenUs; if (delayUs > 0) { whenUs = GetNowUs() + delayUs; } else { whenUs = GetNowUs(); } List<Event>::iterator it = mEventQueue.begin(); while (it != mEventQueue.end() && (*it).mWhenUs <= whenUs) { ++it; } Event event; event.mWhenUs = whenUs; event.mMessage = msg; if (it == mEventQueue.begin()) { mQueueChangedCondition.signal(); } mEventQueue.insert(it, event); }
delayUs用于做延时消息使用,会加上当前时间作为消息应该被处理的时间。然后依次比较mEventQueue链表中的所有消息,并把当前消息插入到比whenUs大的前面一个位置。如果这是mEventQueue中的第一个消息,则发出一个signal通知等待的线程。前面我们知道在ALooper的loop方法中会循环的从mEventQueue获取消息并dispatch出去给WifiDisplaySource的onMessageReceived去处理,我们接着来看这部分的实现。这里绕这么大一圈,最后WifiDisplaySource发送的消息还是给自己处理,主要是为了避开主线程处理的事务太多,通过消息机制,让更多的繁杂的活都在Thread中去完成。
void WifiDisplaySource::onMessageReceived(const sp<AMessage> &msg) { switch (msg->what()) { case kWhatStart: { uint32_t replyID; CHECK(msg->senderAwaitsResponse(&replyID)); AString iface; CHECK(msg->findString("iface", &iface)); status_t err = OK; ssize_t colonPos = iface.find(":"); unsigned long port; if (colonPos >= 0) { const char *s = iface.c_str() + colonPos + 1; char *end; port = strtoul(s, &end, 10); if (end == s || *end != ‘\0‘ || port > 65535) { err = -EINVAL; } else { iface.erase(colonPos, iface.size() - colonPos); } } else { port = kWifiDisplayDefaultPort; } if (err == OK) { if (inet_aton(iface.c_str(), &mInterfaceAddr) != 0) { sp<AMessage> notify = new AMessage(kWhatRTSPNotify, id()); err = mNetSession->createRTSPServer( mInterfaceAddr, port, notify, &mSessionID); } else { err = -EINVAL; } } mState = AWAITING_CLIENT_CONNECTION; sp<AMessage> response = new AMessage; response->setInt32("err", err); response->postReply(replyID); break; }
首先通过AMessage获取到replayID和iface,然后把iface分割成ip和port,分别保存在mInterfaceAddr和port中。在调用ANetSession的createRTSPServer去创建一个RTSP server,最后构造一个response对象并返回。我们先来看createRTSPServer方法:
status_t ANetworkSession::createRTSPServer( const struct in_addr &addr, unsigned port, const sp<AMessage> ?ify, int32_t *sessionID) { return createClientOrServer( kModeCreateRTSPServer, &addr, port, NULL /* remoteHost */, 0 /* remotePort */, notify, sessionID); } status_t ANetworkSession::createClientOrServer( Mode mode, const struct in_addr *localAddr, unsigned port, const char *remoteHost, unsigned remotePort, const sp<AMessage> ?ify, int32_t *sessionID) { Mutex::Autolock autoLock(mLock); *sessionID = 0; status_t err = OK; int s, res; sp<Session> session; s = socket( AF_INET, (mode == kModeCreateUDPSession) ? SOCK_DGRAM : SOCK_STREAM, 0); if (s < 0) { err = -errno; goto bail; } if (mode == kModeCreateRTSPServer || mode == kModeCreateTCPDatagramSessionPassive) { const int yes = 1; res = setsockopt(s, SOL_SOCKET, SO_REUSEADDR, &yes, sizeof(yes)); if (res < 0) { err = -errno; goto bail2; } } err = MakeSocketNonBlocking(s); if (err != OK) { goto bail2; } struct sockaddr_in addr; memset(addr.sin_zero, 0, sizeof(addr.sin_zero)); addr.sin_family = AF_INET; } else if (localAddr != NULL) { addr.sin_addr = *localAddr; addr.sin_port = htons(port); res = bind(s, (const struct sockaddr *)&addr, sizeof(addr)); if (res == 0) { if (mode == kModeCreateRTSPServer || mode == kModeCreateTCPDatagramSessionPassive) { res = listen(s, 4); } else { if (res < 0) { err = -errno; goto bail2; } Session::State state; switch (mode) { case kModeCreateRTSPServer: state = Session::LISTENING_RTSP; break; default: CHECK_EQ(mode, kModeCreateUDPSession); state = Session::DATAGRAM; break; } session = new Session( mNextSessionID++, state, s, notify); mSessions.add(session->sessionID(), session); interrupt(); *sessionID = session->sessionID(); goto bail; bail2: close(s); s = -1; bail: return err; }
createRTSPServer直接调用createClientOrServer,第一个参数是kModeCreateRTSPServer表示要创建一个RTSP server。createClientOrServer的代码比较长,上面是精简后的代码,其它没看到的代码我们以后遇到的过程中再来分析。上面的代码中首先创建一个socket,然后设置一下socket的reuse和no-block属性,接着bind到指定的IP和port上,然后再此socket上开始listen。接下来置当前ANetworkSession的状态是LISTENING_RTSP。然后创建一个Session会话对象,在构造函数中会传入notify作为参数,notify是一个kWhatRTSPNotify的AMessag,后面会看到如何使用它。然后添加到mSessions数组当中。接着调用interrupt方法,让ANetworkSession的NetworkThread线程跳出select语句,并重新计算readFd和writeFd用于select监听的文件句柄。
void ANetworkSession::interrupt() { static const char dummy = 0; ssize_t n; do { n = write(mPipeFd[1], &dummy, 1); } while (n < 0 && errno == EINTR); if (n < 0) { ALOGW("Error writing to pipe (%s)", strerror(errno)); } }
interrupt方法向pipe中写入一个空消息,前面我们已经介绍过threadLoop了,这里就会把刚刚创建的socket加入到监听的readFd中。到这里,关于WifiDisplay连接的建立就讲完了,后面会再从收到Sink的TCP连接请求开始讲起。最后贴一份从WifiDisplaySettings到ANetworkSession如何创建socket的时序图: