/*------------------------------------------------------------------------------------------*\ This file contains material supporting chapter 7 of the cookbook: Computer Vision Programming using the OpenCV Library. by Robert Laganiere, Packt Publishing, 2011. This program is free software; permission is hereby granted to use, copy, modify, and distribute this source code, or portions thereof, for any purpose, without fee, subject to the restriction that the copyright notice may not be removed or altered from any source or altered source distribution. The software is released on an as-is basis and without any warranties of any kind. In particular, the software is not guaranteed to be fault-tolerant or free from failure. The author disclaims all warranties with regard to this software, any use, and any consequent failure, is purely the responsibility of the user. Copyright (C) 2010-2011 Robert Laganiere, www.laganiere.name \*------------------------------------------------------------------------------------------*/ #if !defined LINEF #define LINEF #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> #define PI 3.1415926 class LineFinder { private: // original image cv::Mat img; // vector containing the end points // of the detected lines std::vector<cv::Vec4i> lines; // accumulator resolution parameters double deltaRho; double deltaTheta; // minimum number of votes that a line // must receive before being considered int minVote; // min length for a line double minLength; // max allowed gap along the line double maxGap; public: // Default accumulator resolution is 1 pixel by 1 degree // no gap, no mimimum length LineFinder() : deltaRho(1), deltaTheta(PI/180), minVote(10), minLength(0.), maxGap(0.) {} // Set the resolution of the accumulator void setAccResolution(double dRho, double dTheta) { deltaRho= dRho; deltaTheta= dTheta; } // Set the minimum number of votes void setMinVote(int minv) { minVote= minv; } // Set line length and gap void setLineLengthAndGap(double length, double gap) { minLength= length; maxGap= gap; } // Apply probabilistic Hough Transform std::vector<cv::Vec4i> findLines(cv::Mat& binary) { lines.clear(); cv::HoughLinesP(binary,lines,deltaRho,deltaTheta,minVote, minLength, maxGap); return lines; } // Draw the detected lines on an image void drawDetectedLines(cv::Mat &image, cv::Scalar color=cv::Scalar(255,255,255)) { // Draw the lines std::vector<cv::Vec4i>::const_iterator it2= lines.begin(); while (it2!=lines.end()) { cv::Point pt1((*it2)[0],(*it2)[1]); cv::Point pt2((*it2)[2],(*it2)[3]); cv::line( image, pt1, pt2, color); ++it2; } } // Eliminates lines that do not have an orientation equals to // the ones specified in the input matrix of orientations // At least the given percentage of pixels on the line must // be within plus or minus delta of the corresponding orientation std::vector<cv::Vec4i> removeLinesOfInconsistentOrientations( const cv::Mat &orientations, double percentage, double delta) { std::vector<cv::Vec4i>::iterator it= lines.begin(); // check all lines while (it!=lines.end()) { // end points int x1= (*it)[0]; int y1= (*it)[1]; int x2= (*it)[2]; int y2= (*it)[3]; // line orientation + 90o to get the parallel line double ori1= atan2(static_cast<double>(y1-y2),static_cast<double>(x1-x2))+PI/2; if (ori1>PI) ori1= ori1-2*PI; double ori2= atan2(static_cast<double>(y2-y1),static_cast<double>(x2-x1))+PI/2; if (ori2>PI) ori2= ori2-2*PI; // for all points on the line cv::LineIterator lit(orientations,cv::Point(x1,y1),cv::Point(x2,y2)); int i,count=0; for(i = 0, count=0; i < lit.count; i++, ++lit) { float ori= *(reinterpret_cast<float *>(*lit)); // is line orientation similar to gradient orientation ? if (std::min(fabs(ori-ori1),fabs(ori-ori2))<delta) count++; } double consistency= count/static_cast<double>(i); // set to zero lines of inconsistent orientation if (consistency < percentage) { (*it)[0]=(*it)[1]=(*it)[2]=(*it)[3]=0; } ++it; } return lines; } }; #endif
// HoughLines.cpp : 定义控制台应用程序的入口点。 // // findContours.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" /*------------------------------------------------------------------------------------------*\ This file contains material supporting chapter 7 of the cookbook: Computer Vision Programming using the OpenCV Library. by Robert Laganiere, Packt Publishing, 2011. This program is free software; permission is hereby granted to use, copy, modify, and distribute this source code, or portions thereof, for any purpose, without fee, subject to the restriction that the copyright notice may not be removed or altered from any source or altered source distribution. The software is released on an as-is basis and without any warranties of any kind. In particular, the software is not guaranteed to be fault-tolerant or free from failure. The author disclaims all warranties with regard to this software, any use, and any consequent failure, is purely the responsibility of the user. Copyright (C) 2010-2011 Robert Laganiere, www.laganiere.name \*------------------------------------------------------------------------------------------*/ #include <iostream> #include <vector> #include <opencv2/core/core.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp> #include "HoughLines.h" #pragma comment(lib,"opencv_core2410d.lib") #pragma comment(lib,"opencv_highgui2410d.lib") #pragma comment(lib,"opencv_imgproc2410d.lib") #define PI 3.1415926 int main() { // Read input image cv::Mat image= cv::imread("road.jpg",0); if (!image.data) return 0; // Display the image cv::namedWindow("Original Image"); cv::imshow("Original Image",image); // Apply Canny algorithm cv::Mat contours; cv::Canny(image,contours,125,350); cv::Mat contoursInv; cv::threshold(contours,contoursInv,128,255,cv::THRESH_BINARY_INV); // Display the image of contours cv::namedWindow("Canny Contours"); cv::imshow("Canny Contours",contoursInv); // Hough tranform for line detection std::vector<cv::Vec2f> lines; cv::HoughLines(contours,lines,1,PI/180,60); // Draw the lines cv::Mat result(contours.rows,contours.cols,CV_8U,cv::Scalar(255)); image.copyTo(result); std::cout << "Lines detected: " << lines.size() << std::endl; std::vector<cv::Vec2f>::const_iterator it= lines.begin(); while (it!=lines.end()) { float rho= (*it)[0]; // first element is distance rho float theta= (*it)[1]; // second element is angle theta if (theta < PI/4. || theta > 3.*PI/4.) { // ~vertical line // point of intersection of the line with first row cv::Point pt1(rho/cos(theta),0); // point of intersection of the line with last row cv::Point pt2((rho-result.rows*sin(theta))/cos(theta),result.rows); // draw a white line cv::line( result, pt1, pt2, cv::Scalar(255), 1); } else { // ~horizontal line // point of intersection of the line with first column cv::Point pt1(0,rho/sin(theta)); // point of intersection of the line with last column cv::Point pt2(result.cols,(rho-result.cols*cos(theta))/sin(theta)); // draw a white line cv::line( result, pt1, pt2, cv::Scalar(255), 1); } std::cout << "line: (" << rho << "," << theta << ")\n"; ++it; } // Display the detected line image cv::namedWindow("Detected Lines with Hough"); cv::imshow("Detected Lines with Hough",result); // Create LineFinder instance LineFinder ld; // Set probabilistic Hough parameters ld.setLineLengthAndGap(100,20); ld.setMinVote(80); // Detect lines std::vector<cv::Vec4i> li= ld.findLines(contours); ld.drawDetectedLines(image); cv::namedWindow("Detected Lines with HoughP"); cv::imshow("Detected Lines with HoughP",image); cv::waitKey(); return 0; }
实现效果: