BIBD&SBIBD的矩阵题

证明不存在 \(01\) 方阵 \(A\) 使得:

\(A^TA=\begin{pmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{pmatrix}_{22\times22}\)

\(A\begin{pmatrix}1\\1\\ \vdots\\ 1\end{pmatrix}_{22\times1}=\begin{pmatrix}7\\7\\ \vdots\\ 7\end{pmatrix}_{22\times1}\)

证明:

\(\exists A\) 满足上述条件。

\(\because A^TA=\begin{pmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{pmatrix}_{22\times22}\)

\(\therefore \begin{aligned} |A^TA| & = \begin{vmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{vmatrix}_{22\times22} \\ & = ( 7+(22-1)\times 2 )(7-2)^{22-1} \\ &= 7^2\times 5^{21}\end{aligned}\)

\(\because |A|^2=|A^T||A|=|A^TA|\)

\(\therefore |A|=\pm\sqrt{|A^TA|}=\pm7\times5^{10}\sqrt{5}\)

\(\because A\)\(01\) 矩阵。

\(\therefore |A|\in \mathbb{Z}\)

\(\because \pm7\times5^{10}\sqrt{5}\notin \mathbb{Z}\)

\(\therefore\) 假设不成立,即 \(\nexists A\) 满足上述条件,原命题得证。

BIBD&SBIBD的矩阵题

上一篇:3.3V瞬变抑制二极管SMF3.3A


下一篇:[ESXi6.5]修改时区