【数组】Unique Paths

题目:

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

【数组】Unique Paths

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

思路:

这道题看上去有点摸不到头脑,其实细想,到达某一点路径数就等于到达它上一点和左边点的路径数之和。这样,我们就可以建立一个二维数组,进行求解即可。

/**
* @param {number} m
* @param {number} n
* @return {number}
*/
var uniquePaths = function(m, n) {
var f=[];
for(var i=0;i<m;i++){
f[i]=[];
} for(var i=0;i<n;i++){
f[0][i]=1;
} for(var i=0;i<m;i++){
f[i][0]=1;
} for(var i=1;i<m;i++){
for(var j=1;j<n;j++){
f[i][j]=f[i-1][j]+f[i][j-1];
}
}
return f[m-1][n-1];
};
上一篇:【数组】Unique Paths II


下一篇:一篇分析诊断被"hang"住数据库的资料(Oracle Performance Diagnostic Guide——Hang/Locking)