机器学习七

1.逻辑回归是怎么防止过拟合的?为什么正则化可以防止过拟合?(大家用自己的话介绍下)

(1)逻辑回归是利用正则化来防止过拟合的;

(2)正则化是通过约束参数的范数使其不要太大,所以可以在一定程度上减少过拟合情况;

2.用logiftic回归来进行实践操作,数据不限。

源代码

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier, export_graphviz  # 导入决策树分类器
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report

# 预测天气状况是否适合打球
data = pd.read_csv('data/data.csv')
#数据预处理
data.loc[data['Play']=='Yes','Play'] =1
data.loc[data['Play']=='No','Play'] =0

data.loc[data['Windy']=='Strong','Windy'] =1
data.loc[data['Windy']=='Weak','Windy'] =0

data.loc[data['Humidity']=='High','Humidity'] =1
data.loc[data['Humidity']=='Normal','Humidity'] =0

data.loc[data['Temp']=='Hot','Temp'] =1
data.loc[data['Temp']=='Mild','Temp'] =2
data.loc[data['Temp']=='Cool','Temp'] =3

data.loc[data['Outlook']=='Sunny','Outlook'] =1
data.loc[data['Outlook']=='Overcast','Outlook'] =2
data.loc[data['Outlook']=='Rain','Outlook'] =3

#分出数据集和标签
# dataSet = np.array(data.loc[:,:]) #数据集
# labels = list(data.columns.values)#标签
x_data=data.iloc[1:,1:-1] #取出数据集
y_data=data.iloc[1:,-1] #取出目标值/标签


#2.构建和训练模型
x_tr,x_te,y_tr,y_te=train_test_split(x_data,y_data,test_size=0.2)

std = StandardScaler()
x_train = std.fit_transform(x_tr)
x_test = std.transform(x_te)


LG=LogisticRegression()
LG.fit(x_tr.astype('int'),y_tr.astype('int'))
pre = LG.predict(x_test)
pre = np.rint(pre)
print(data)
print('模型的准确率:',LG.score(x_te.astype('int'),y_te.astype('int')))
print('模型的召回率:',classification_report(y_te.astype('int'),pre))

运行结果截图

机器学习七

 

上一篇:python数据分析004_多层索引的取值和排序


下一篇:linux服务器将iptables卸掉了,导致服务器网络问题