$$\Large{\LaTeX}$$
:
$ $
表示行内
$$ $$
表示独立
$\operatorname{lcm}(x)$
\(\operatorname{lcm}(x)\)
$\pm$
\(\pm\)
$\equiv$
\(\equiv\)
$\pmod{p}$
\(\pmod{p}\)
$\%$
\(\%\)
$\sqrt[n]{x} \sqrt{x}$
\(\sqrt[n]{x} \sqrt{x}\)
$\in \ne$
\(\in \ne\)
$\leqslant \geqslant$
\(\leqslant \geqslant\)
$\perp \angle 45^\circ$
\(\perp \angle \ 45^\circ\)
$\forall \exists$
\(\forall \exists\)
$\therefore \& \because$
\(\therefore \& \because\)
$\implies \iff$
\(\implies \iff\)
$a^{x+2y}_{i,j}$
\(a^{x+2y}_{i,j}\)
$\sum\limits_{i=1}^n a_i$
\(\sum\limits_{i=1}^n a_i\)
$\prod\limits_{i=1}^n a_i$
\(\prod\limits_{i=1}^n a_i\)
$\lim\limits_{n\to\infty}x_n$
\(\lim\limits_{n\to\infty}x_n\)
$\int_{-N}^{N}e^x \, dx$
\(\int_{-N}^{N}e^x \, dx\)
$\dfrac{1}{x+\dfrac{3}{y+\dfrac{1}{5}}}$
\(\dfrac{1}{x+\dfrac{3}{y+\dfrac{1}{5}}}\)
$\dots \vdots \ddots$
\(\dots \quad \vdots \quad \ddots\)
$\begin{matrix}a&b\\c&d\end{matrix}$
\(\begin{matrix}a&b\\c&d\end{matrix}\)
$\begin{vmatrix}a&b\\c&d\end{vmatrix}$
\(\begin{vmatrix}a&b\\c&d\end{vmatrix}\)
$\begin{bmatrix}a&b\\c&d\end{bmatrix}$
\(\begin{bmatrix}a&b\\c&d\end{bmatrix}\)
$\begin{Batrix}a&b\\c&d\end{Batrix}$
\(\begin{Bmatrix}a&b\\c&d\end{Bmatrix}\)
$\begin{pmatrix}a&b\\c&d\end{pmatrix}$
\(\begin{pmatrix}a&b\\c&d\end{pmatrix}\)
$f(x)=\begin{cases} x & x\geqslant0 \\ x^{-1} & x<0 \end{cases}$
\(f(x)=\begin{cases} x & x\geqslant0 \\ x^{-1} & x<0 \end{cases}\)
$\begin{aligned} 3 & = 1+1+1 \\ & = 1+2 \end{aligned}$
\(\begin{aligned} 3 & = 1+1+1 \\ & = 1+2 \end{aligned}\)
$\begin{aligned} a_1 & = 1 \\ a_2 & = 2 \\ & \dots \\ a_n & = n \end{aligned}$
\(\begin{aligned} a_1 & = 1 \\ a_2 & = 2 \\ & \dots \\ a_n & = n \end{aligned}\)
$\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega$
\(\Gamma \Delta \Theta \Lambda \Xi \Pi \Sigma \Upsilon \Phi \Psi \Omega\)
$\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda$
\(\alpha \beta \gamma \delta \epsilon \zeta \eta \theta \iota \kappa \lambda\)
$\mu \nu \xi \omicron \pi \varepsilon \varrho \varsigma \vartheta \varphi \aleph$
\(\mu \nu \xi \omicron \pi \varepsilon \varrho \varsigma \vartheta \varphi \aleph\)<-最后一个是希伯来文
$\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
\(\mathbb{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)
$\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
\(\mathtt{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)
$\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}$
\(\text{ABCDEFGHIJKLMNOPQRSTUVWXYZ}\)
$\left(\dfrac{y+\dfrac{2}{3}}{x+\dfrac{2}{3}}\right)^5$
\(\left(\dfrac{y+\dfrac{2}{3}}{x+\dfrac{2}{3}}\right)^5\)此功能(使用\left和\right)可以推广到不同的括号
$\left\lfloor\dfrac{1}{2}\right\rfloor \left\lceil\dfrac{1}{2}\right\rceil$
\(\left\lfloor\dfrac{1}{2}\right\rfloor \left\lceil\dfrac{1}{2}\right\rceil\)
$\boxed{a^x+b^y=c^z}$
\(\boxed{a^x+b^y=c^z}\)
下面 \(m\) 均表示一个中文字符的宽度,即两个英文字符的宽度。
\(x,y\) 均为演示需要,重点为中间空隙大小。
$x \! y$
宽度为 \(-\dfrac{m}{6}\)
\(x \! y\)
$xy$
宽度为 \(0\)
\(xy\)
$x \, y$
宽度为 \(\dfrac{m}{6}\)
\(x \, y\)
$x \; y$
宽度为 \(\dfrac{2m}{7}\)
\(x \; y\)
$x \ y$
宽度为 \(\dfrac{m}{3}\)
\(x \ y\)
$x \quad y$
宽度为 \(m\)
\(x \quad y\)
$x \qquad y$
宽度为 \(2m\)
\(x \qquad y\)