2.2 Apache Spark概述
Hadoop和MR已有10年历史,已经被证明是高性能处理海量数据的最佳解决方案。然而,MR在迭代计算中性能不足,在这种情况下,多个MR作业之间的输出必须被写入 HDFS。在单个MR作业中,它的性能不足则是因为MR框架存在的一些缺点所致。
让我们来看看计算趋势的发展历史,以便了解计算的格局在过去20年中的变化。
这个趋势是当网络成本更低时(1990年代)对URI索引(Reference),当存储成本更低时(2000 年代)进行复制(Replicate),以及当内存成本更低时(2010 年代)进行再计算(Recompute),如图2-5 所示:
让我们来了解一下,为什么基于内存的计算很重要,以及它如何能产生显著的性能优势。
图2-6显示了从各种介质到CPU的数据传输速率。磁盘到CPU的传输速率为100 MB/s,SSD到CPU为600 MB/s,通过网络到CPU为1 MB到1 GB/s。然而,RAM到CPU的传输速度惊人地快,达到了10 GB/s。所以,理想的思路是把所有或部分数据缓存到内存里,以便实现更高的性能:
2.2.1 Spark 的发展历史
Spark 始于 2009 年,起初是作为加州大学伯克利分校 RAD 实验室的一个研究项目,该实验室就是 AMPLab 的前身。该实验室的研究人员以前一直在使用 Hadoop MapReduce,并观察到 MR 对于迭代和交互式计算工作是低效率的。因此,从一开始,Spark 被设计为快速进行交互式查询和迭代的算法,采用了支持内存存储和高效故障恢复等一些思路。
在2011年,AMPLab开始在Spark上开发更高级的组件,如Shark和Spark Streaming。这些组件有时被称为Berkeley数据分析框架(Berkeley Data Analytics Stack,BDAS)。
Spark于2010年3月首次开源,并于2013年6月被转移到Apache软件基金会。
到2014年2月,它成为了Apache软件基金会的一个*项目。Spark已经成为大数据领域最大的开源社区之一。现在,有超过50个组织里的超过250位贡献者正在为Spark开发做出贡献。它的用户群增长迅猛,包括了从小型公司到财富500强公司。图2-7显示了 Apache Spark的发展历史:
2.2.2 Apache Spark 是什么
让我们来了解一下Apache Spark 是什么,以及是什么使之成为大数据分析的利器:
2.2.3 Apache Spark 不是什么
Hadoop 提供了用于存储的 HDFS 和用于计算的 MR。但是,Spark 不提供任何特定的存储介质。Spark 主要是一个计算引擎,但你可以把数据存储在内存里或 Tachyon 上进行处理。
Spark 具有从存储在 HDFS 或 Hadoop API 支持的其他存储系统(包括你的本地文件系统、Amazon S3、Cassandra、Hive、HBase、Elasticsearch 等)中的任何文件创建分布式数据集的能力。
重要的是要注意 Spark 不是 Hadoop,也不需要 Hadoop 来运行它。它只是为那些实现了 Hadoop API 的存储系统提供支持而已。Spark 支持文本文件、序列文件、Avro、Parquet 和其他任何 Hadoop 输入格式。
2.2.4 MapReduce 的问题
在性能和把业务问题转换为 MR 问题方面,MR 开发人员都面临着一些挑战。让我们来了解这些与 MR 相关的问题。以及如何在 Apache Spark 中解决这些问题:
MR速度缓慢是因为 MR 作业中的每个作业都把数据存储在磁盘上。对同一数据集的多个查询会分别读取数据,产生大量的磁盘读写,如图2-8 所示:
Spark 将 MR 的概念提升到更高水平,将中间数据存储在内存中,并根据需要多次重复使用。这样就在内存速度下提供了高性能,如图2-8 所示。
总而言之,MR 和 Spark 之间的区别如下:
2.2.5 Spark 的架构
Spark 的架构组件有 Spark Core、Spark SQL、Dataset和DataFrame、Spark Streaming、Structured Streaming、MLlib、GraphX 以及 SparkR,如图2-9所示:
下面是 Spark 组件与 Hadoop Ecosystem 组件的比较:
为了从更高的层次理解 Spark 框架,让我们来看看 Spark 的这些核心组件以及它们的集成:
Spark 生态系统是一个统一的技术架构,它为你提供了在一个程序中结合 SQL、流和机器学习的强大功能。这种统一性的优点如下:
这种统一性的一个示例如图2-10 所示: