当使用 Pandas 做数据分析的时,需要读取事先准备好的数据集,这是做数据分析的第一步。Panda 提供了多种读取数据的方法:
- read_csv() 用于读取文本文件
- read_json() 用于读取 json 文件
- read_sql_query() 读取 sql 语句的,
本节将对上述方法做详细介绍。
CSV文件读取
CSV 又称逗号分隔值文件,是一种简单的文件格式,以特定的结构来排列表格数据。 CSV 文件能够以纯文本形式存储表格数据,比如电子表格、数据库文件,并具有数据交换的通用格式。CSV 文件会在 Excel 文件中被打开,其行和列都定义了标准的数据格式。
将 CSV 中的数据转换为 DataFrame 对象是非常便捷的。和一般文件读写不一样,它不需要你做打开文件、读取文件、关闭文件等操作。相反,您只需要一行代码就可以完成上述所有步骤,并将数据存储在 DataFrame 中。
下面进行实例演示,首先您需要创建一组数据,并将其保存为 CSV 格式,数据如下:
Name,Hire Date,Salary,Leaves Remaining John Idle,08/15/14,50000.00,10 Smith Gilliam,04/07/15,65000.00,6 Parker Chapman,02/21/14,45000.00,7 Jones Palin,10/14/13,70000.00,3 Terry Gilliam,07/22/14,48000.00,9 Michael Palin,06/28/13,66000.00,8
注意:将上述数据保存到.txt
的文本文件中,然后将文件的扩展名后缀修改为 csv,即可完成 csv 文件的创建。
接下来,我们使用下列代码读写数据:
- import pandas
- #仅仅一行代码就完成了数据读取,但是注意文件路径不要写错
- df = pandas.read_csv('C:/Users/Administrator/Desktop/hrd.csv')
- print(df)
输出结果:
Name Hire Date Salary Leaves Remaining 0 John Idle 08/15/14 50000.0 10 1 Smith Gilliam 04/07/15 65000.0 6 2 Parker Chapman 02/21/14 45000.0 7 3 Jones Palin 10/14/13 70000.0 3 4 Terry Gilliam 07/22/14 48000.0 9 5 Michael Palin 06/28/13 66000.0 8
在下一节会对 read_csv() 函数做详细讲解。
json读取文件
您可以通过下列方法来读取一个 json 文件,如下所示:
- import pandas as pd
- data = pd.read_json('C:/Users/Administrator/Desktop/hrd.json')
- print(data)
输出结果:
Name Hire Date Salary Leaves Remaining 0 John Idle 08/15/14 50000.0 10 1 Smith Gilliam 04/07/15 65000.0 6 2 Parker Chapman 02/21/14 45000.0 7 3 Jones Palin 10/14/13 70000.0 3 4 Terry Gilliam 07/22/14 48000.0 9 5 Michael Palin 06/28/13 66000.0 8
SQL数据库读取
如果想要从 SQL 数据库读取数据,首先您应该使用 Python 和数据库建立连接,然后将查询语句传递给 read_sql_query() 方法,下面做简单地演示:
1) 安装pysqlite3模块
pip install pysqlite3
2) 建立数据连接
import sqlite3 con = sqlite3.connect("database.db")
3) 数据库读取数据
在 SQLite 数据库中创建一张信息表,您可以随意添加一些信息,最后使用下列方法读取数据即可:
#con参数指定操作数据库的引擎,可以指定,也可默认 df = pd.read_sql_query("SELECT * FROM information",con)
---------------------------------------------------------------
在《Python Pandas读取文件》中,我们讲解了多种用 Pandas 读写文件的方法。本节我们讲解如何应用这些方法 。
我们知道,文件的读写操作属于计算机的 IO 操作,Pandas IO 操作提供了一些读取器函数,比如 pd.read_csv()、pd.read_json 等,它们都返回一个 Pandas 对象。
在 Pandas 中用于读取文本的函数有两个,分别是: read_csv() 和 read_table() ,它们能够自动地将表格数据转换为 DataFrame 对象。其中 read_csv 的语法格式,如下:
pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer',names=None, index_col=None, usecols=None)
下面,新建一个 txt 文件,并添加以下数据:
ID,Name,Age,City,Salary 1,Jack,28,Beijing,22000 2,Lida,32,Shanghai,19000 3,John,43,Shenzhen,12000 4,Helen,38,Hengshui,3500
将 txt 文件另存为 person.csv 文件格式,直接修改文件扩展名即可。接下来,对此文件进行操作。
read_csv()
read_csv() 表示从 CSV 文件中读取数据,并创建 DataFrame 对象。
- import pandas as pd
- #需要注意文件的路径
- df=pd.read_csv("C:/Users/Administrator/Desktop/person.csv")
- print (df)
输出结果:
ID Name Age City Salary 0 1 Jack 28 Beijing 22000 1 2 Lida 32 Shanghai 19000 2 3 John 43 Shenzhen 12000 3 4 Helen 38 Hengshui 3500
1) 自定义索引
在 CSV 文件中指定了一个列,然后使用index_col
可以实现自定义索引。
- import pandas as pd
- df=pd.read_csv("C:/Users/Administrator/Desktop/person.csv",index_col=['ID'])
- print(df)
输出结果:
Name Age City Salary ID 1 Jack 28 Beijing 22000 2 Lida 32 Shanghai 19000 3 John 43 Shenzhen 12000 4 Helen 38 Hengshui 3500
2) 查看每一列的dtype
- import pandas as pd
- #转换salary为float类型
- df=pd.read_csv("C:/Users/Administrator/Desktop/person.csv",dtype={'Salary':np.float64})
- print(df.dtypes)
输出结果:
ID int64 Name object Age int64 City object Salary float64 dtype: object
注意:默认情况下,Salary 列的 dtype 是 int 类型,但结果显示其为 float 类型,因为我们已经在上述代码中做了类型转换。
3) 更改文件标头名
使用 names 参数可以指定头文件的名称。
- import pandas as pd
- df=pd.read_csv("C:/Users/Administrator/Desktop/person.csv",names=['a','b','c','d','e'])
- print(df)
输出结果:
a b c d e 0 ID Name Age City Salary 1 1 Jack 28 Beijing 22000 2 2 Lida 32 Shanghai 19000 3 3 John 43 Shenzhen 12000 4 4 Helen 38 Hengshui 3500
注意:文件标头名是附加的自定义名称,但是您会发现,原来的标头名(列标签名)并没有被删除,此时您可以使用header
参数来删除它。
通过传递标头所在行号实现删除,如下所示:
- import pandas as pd
- df=pd.read_csv("C:/Users/Administrator/Desktop/person.csv",names=['a','b','c','d','e'],header=0)
- print(df)
输出结果:
a b c d e 0 1 Jack 28 Beijing 22000 1 2 Lida 32 Shanghai 19000 2 3 John 43 Shenzhen 12000 3 4 Helen 38 Hengshui 3500
假如原标头名并没有定义在第一行,您也可以传递相应的行号来删除它。
4) 跳过指定的行数
skiprows
参数表示跳过指定的行数。
- import pandas as pd
- df=pd.read_csv("C:/Users/Administrator/Desktop/person.csv",skiprows=2)
- print(df)
输出结果:
2 Lida 32 Shanghai 19000 0 3 John 43 Shenzhen 12000 1 4 Helen 38 Hengshui 3500
注意:包含标头所在行。
to_csv()
Pandas 提供的 to_csv() 函数用于将 DataFrame 转换为 CSV 数据。如果想要把 CSV 数据写入文件,只需向函数传递一个文件对象即可。否则,CSV 数据将以字符串格式返回。
下面看一组简单的示例:
- import pandas as pd
- data = {'Name': ['Smith', 'Parker'], 'ID': [101, 102], 'Language': ['Python', 'JavaScript']}
- info = pd.DataFrame(data)
- print('DataFrame Values:\n', info)
- #转换为csv数据
- csv_data = info.to_csv()
- print('\nCSV String Values:\n', csv_data)
输出结果:
DataFrame: Name ID Language 0 Smith 101 Python 1 Parker 102 JavaScript csv数据: ,Name,ID,Language 0,Smith,101,Python 1,Parker,102,JavaScript
指定 CSV 文件输出时的分隔符,并将其保存在 pandas.csv 文件中,代码如下:
纯文本复制
- import pandas as pd
- #注意:pd.NaT表示null缺失数据
- data = {'Name': ['Smith', 'Parker'], 'ID': [101, pd.NaT], 'Language': ['Python', 'JavaScript']}
- info = pd.DataFrame(data)
- csv_data = info.to_csv("C:/Users/Administrator/Desktop/pandas.csv",sep='|')