前言
求解策略
- 若能直接做出此距离,直接求解即可
- 若不能直接做出此距离,常利用等体积法等思路转换视角后求解与等体积法平行并列的思路是,若求点线距,那么可以借助等面积法求解;
(1).求异面直线\(A_{1}B\)与\(B_{1}C_{1}\)所成角;
解: 在直三棱柱\(A_{1}B_{1}C_{1}-ABC\)中,\(AA_{1}\perp AB\),\(AA_{1}\perp AC\),\(AB=AC=AA_{1}=1\),\(\angle BAC=90^{\circ}\)
所以,\(A_{1}B=A_{1}C=BC=\sqrt{2}\)
因为,\(BC//B_{1}C_{1}\),所以\(\angle A_{1}BC\)为异面直线 \(A_{1}B\) 与 \(B_{1}C_{1}\) 所成的角或补角.
在\(\triangle A_{1}BC\)中,因为\(A_{1}B=A_{1}C=BC=\sqrt{2}\),
所以,异面直线\(A_{1}B\)与\(B_{1}C_{1}\)所成角为\(\cfrac{\pi}{3}\).
(2).求点\(B_{1}\)到平面\(A_{1}BC\)的距离.
解:设点\(B_{1}\)到平面\(A_{1}BC\)的距离为\(h\),
由(1)得\(S_{\Delta ABC}=\cfrac{1}{2}\times\sqrt{2}\times\sqrt{2}\cdot\sin\cfrac{\pi}{3}\)
\(=\cfrac{\sqrt{3}}{2}\)\(S_{\triangle AB_{1}B}=\cfrac{1}{2}\times1\times1=\cfrac{1}{2}\),
因为,\(V_{B_{1}-ABC}=V_{C-A_{1}B_1B}\),
所以,\(\cfrac{1}{3}S_{\Delta ABC}\cdot h=\cfrac{1}{3}S_{\Delta A_{1}B_{1}B}\cdot CA\),解得,\(h=\cfrac{\sqrt{3}}{3}\).
所以,点\(B_{1}\)到平面\(A_{1}BC\)的距离为\(\cfrac{\sqrt{3}}{3}\).