无向图

简介

在现实生活中,有许多应用场景会包含很多点以及点点之间的连接,而这些应用场景我们都可以用即将要学习的图这种数据结构去解决。

地图:

我们生活中经常使用的地图,基本上是由城市以及连接城市的道路组成,如果我们把城市看做是一个一个的点,把道路看做是一条一条的连接,那么地图就是我们将要学习的图这种数据结构。

无向图

电路图:

下面是一个我们生活中经常见到的集成电路板,它其实就是由一个一个触点组成,并把触点与触点之间通过线进行连接,这也是我们即将要学习的图这种数据结构的应用场景

无向图

图的定义及分类:

定义:图是由一组顶点和一组能够将两个顶点相连的边组成的

无向图

特殊的图:

  1. 自环:即一条连接一个顶点和其自身的边;
  2. 平行边:连接同一对顶点的两条边;

无向图

图的分类:

按照连接两个顶点的边的不同,可以把图分为以下两种:

无向图:边仅仅连接两个顶点,没有其他含义;

有向图:边不仅连接两个顶点,并且具有方向;

无向图

图的相关术语

相邻顶点:当两个顶点通过一条边相连时,我们称这两个顶点是相邻的,并且称这条边依附于这两个顶点。

度:某个顶点的度就是依附于该顶点的边的个数

子图:是一幅图的所有边的子集(包含这些边依附的顶点)组成的图;

路径:是由边顺序连接的一系列的顶点组成

环:是一条至少含有一条边且终点和起点相同的路径

无向图

连通图:如果图中任意一个顶点都存在一条路径到达另外一个顶点,那么这幅图就称之为连通图

连通子图:一个非连通图由若干连通的部分组成,每一个连通的部分都可以称为该图的连通子图

无向图

图的存储结构

要表示一幅图,只需要表示清楚以下两部分内容即可:

  1. 图中所有的顶点;
  2. 所有连接顶点的边;

常见的图的存储结构有两种:邻接矩阵和邻接表

邻接矩阵

  1. 使用一个V*V的二维数组int[V][V] adj,把索引的值看做是顶点;
  2. 如果顶点v和顶点w相连,我们只需要将adj[v][w]和adj[w][v]的值设置为1,否则设置为0即可。
无向图

很明显,邻接矩阵这种存储方式的空间复杂度是V^2的,如果我们处理的问题规模比较大的话,内存空间极有可能不够用。

邻接表

1.使用一个大小为V的数组 Queue[V] adj,把索引看做是顶点;

2.每个索引处adj[v]存储了一个队列,该队列中存储的是所有与该顶点相邻的其他顶点

无向图

很明显,邻接表的空间并不是是线性级别的,所以后面我们一直采用邻接表这种存储形式来表示图。

代码实现

图API设计:

类名 Graph
构造方法 Graph(int V):创建一个包含V个顶点但不包含边的图
成员方法 1.public int V():获取图中顶点的数量
2.public int E():获取图中边的数量
3.public void addEdge(int v,int w):向图中添加一条边 v-w
4.public Queue adj(int v):获取和顶点v相邻的所有顶点
成员变量 1.private final int V: 记录顶点数量
2.private int E: 记录边数量
3.private Queue[] adj: 邻接表
/**
 * @author wen.jie
 * @date 2021/8/27 10:43
 * 无向图
 */
public class Graph {

    //顶点数目
    private final int V;
    //边的数目
    private int E;
    //邻接表
    private Queue<Integer>[] adj;

    //初始化
    public Graph(int v) {
        this.V = v;
        this.E = 0;
        this.adj = new Queue[v];
        for (int i = 0; i < adj.length; i++) {
            adj[i] = new Queue<>();
        }
    }

    public int V(){
        return V;
    }

    public int E(){
        return E;
    }

    //向图中添加一条边 v-w
    public void addEdge(int v, int w) {
        adj[v].enqueue(w);
        adj[w].enqueue(v);
        E++;
    }

    //获取和顶点v相邻的所有顶点
    public Queue<Integer> adj(int v) {
        return adj[v];
    }

}

图的搜索

在很多情况下,我们需要遍历图,得到图的一些性质,例如,找出图中与指定的顶点相连的所有顶点,或者判定某个顶点与指定顶点是否相通,是非常常见的需求。

有关图的搜索,最经典的算法有深度优先搜索和广度优先搜索,接下来我们分别讲解这两种搜索算法。

深度优先搜索

所谓的深度优先搜索,指的是在搜索时,如果遇到一个结点既有子结点,又有兄弟结点,那么先找子结点,然后找 兄弟结点。

无向图

很明显,在由于边是没有方向的,所以,如果4和5顶点相连,那么4会出现在5的相邻链表中,5也会出现在4的相邻链表中,那么为了不对顶点进行重复搜索,应该要有相应的标记来表示当前顶点有没有搜索过,可以使用一个布尔类型的数组 boolean[V] marked,索引代表顶点,值代表当前顶点是否已经搜索,如果已经搜索,标记为true, 如果没有搜索,标记为false;

api设计:

类名 DepthFirstSearch
构造方法 DepthFirstSearch(Graph G,int s):构造深度优先搜索对象,使用深度优先搜索找出G图中s顶点 的所有相通顶点
成员方法 1.private void dfs(Graph G, int v):使用深度优先搜索找出G图中v顶点的所有相通顶点
2.public boolean marked(int w):判断w顶点与s顶点是否相通
3.public int count():获取与顶点s相通的所有顶点的总数
成员变量 1.private boolean[] marked: 索引代表顶点,值表示当前顶点是否已经被搜索
2.private int count:记录有多少个顶点与s顶点相通

代码实现:

/**
 * dfs:深度优先搜索
 * @author wen.jie
 * @date 2021/8/27 11:08
 */
public class DepthFirstSearch {
    //索引代表顶点,值代表当前顶点是否已经被搜索
    private boolean[] marked;
    //记录有多少顶点与s顶点相通
    private int count;

    public DepthFirstSearch(Graph G, int s) {
        this.marked = new boolean[G.V()];
        dfs(G, s);
    }

    //深度优先搜索找出G图中v顶点的所有相通顶点
    private void dfs(Graph G, int v) {
        //标为已搜索
        marked[v] = true;
        for (int w : G.adj(v)) {
            if (!marked(w))
                dfs(G, w);
        }
        count++;
    }

    //判断w顶点与s顶点是否相通
    public boolean marked(int w){
        return marked[w];
    }

    //获取与顶点s相通的所有顶点的总数
    public int count() {
        return this.count;
    }
}

构造如下的图,并测试:

无向图
    private Graph graph = new Graph(13);
    {
        graph.addEdge(0, 5);
        graph.addEdge(0, 1);
        graph.addEdge(0, 2);
        graph.addEdge(0, 6);
        graph.addEdge(6, 4);
        graph.addEdge(4, 3);
        graph.addEdge(4, 5);
        graph.addEdge(5, 3);
        graph.addEdge(7, 8);
        graph.addEdge(9, 10);
        graph.addEdge(9, 11);
        graph.addEdge(9, 12);
        graph.addEdge(11, 12);
    }


    @Test
    public void test1() {
        DepthFirstSearch dfs = new DepthFirstSearch(graph, 0);
        int count = dfs.count();
        System.out.println("与起点0相通的顶点数量为:"+ count);
        System.out.println(dfs.marked(5));
        System.out.println(dfs.marked(7));
    }

无向图

广度优先搜索

所谓的广度优先搜索,指的是在搜索时,如果遇到一个结点既有子结点,又有兄弟结点,那么先找兄弟结点,然后找子结点。

无向图

api设计:

类名 BreadthFirstSearch
构造方法 BreadthFirstSearch(Graph G,int s):构造广度优先搜索对象,使用广度优先搜索找出G图中s顶点的所有相邻顶点
构造方法 1.private void bfs(Graph G, int v):使用广度优先搜索找出G图中v顶点的所有相邻顶点
2.public boolean marked(int w):判断w顶点与s顶点是否相通
3.public int count():获取与顶点s相通的所有顶点的总数
成员变量 1.private boolean[] marked: 索引代表顶点,值表示当前顶点是否已经被搜索
2.private int count:记录有多少个顶点与s顶点相通
3.private Queue waitSearch: 用来存储待搜索邻接表的点

代码实现:

/**
 * @author wen.jie
 * @date 2021/8/27 13:43
 * bfs:广度优先遍历
 */
public class BreadthFirstSearch {

    //索引代表顶点,值代表当前顶点是否已经被搜索
    private boolean[] marked;
    //记录有多少顶点与s顶点相通
    private int count;
    //用来存储待搜索邻接表的点
    private Queue<Integer> waitSearch;

    public BreadthFirstSearch(Graph G, int s) {
        this.marked = new boolean[G.V()];
        this.waitSearch = new Queue<>();
        bfs(G, s);
    }

    //深度优先搜索找出G图中v顶点的所有相通顶点
    private void bfs(Graph G, int v) {
        marked[v] = true;
        //入队列,待搜索
        waitSearch.enqueue(v);
        while (!waitSearch.isEmpty()) {
            //出队列
            Integer wait = waitSearch.dequeue();
            for (Integer w : G.adj(wait)) {
                if (!marked[w]) {
                    bfs(G, w);
                }
            }
        }
        count++;
    }

    //判断w顶点与s顶点是否相通
    public boolean marked(int w){
        return marked[w];
    }

    //获取与顶点s相通的所有顶点的总数
    public int count() {
        return this.count;
    }

}

测试:

    @Test
    public void test2() {
        BreadthFirstSearch bfs = new BreadthFirstSearch(graph, 0);
        int count = bfs.count();
        System.out.println("与起点0相通的顶点数量为:"+ count);
        System.out.println(bfs.marked(5));
        System.out.println(bfs.marked(7));
    }

路径查找

在实际生活中,地图是我们经常使用的一种工具,通常我们会用它进行导航,输入一个出发城市,输入一个目的地城市,就可以把路线规划好,而在规划好的这个路线上,会路过很多中间的城市。这类问题翻译成专业问题就是: 从s顶点到v顶点是否存在一条路径?如果存在,请找出这条路径。

无向图

例如在上图上查找顶点0到顶点4的路径用红色标识出来,那么我们可以把该路径表示为 0-2-3-4。

深度优先遍历查找路径

类名 DepthFirstPaths
构造方法 DepthFirstPaths(Graph G,int s):构造深度优先搜索对象,使用深度优先搜索找出G图中起点为 s的所有路径
构造方法 1.private void dfs(Graph G, int v):使用深度优先搜索找出G图中v顶点的所有相邻顶点
2.public boolean hasPathTo(int v):判断v顶点与s顶点是否存在路径
3.public Stack pathTo(int v):找出从起点s到顶点v的路径(就是该路径经过的顶点)
成员变量 1.private boolean[] marked: 索引代表顶点,值表示当前顶点是否已经被搜索
2.private int s:起点
3.private int[] edgeTo:索引代表顶点,值代表从起点s到当前顶点路径上的最后一个顶点

思路:

我们实现路径查找,最基本的操作还是得遍历并搜索图,所以,我们的实现暂且基于深度优先搜索来完成。其搜索的过程是比较简单的。我们添加了edgeTo[]整型数组,这个整型数组会记录从每个顶点回到起点s的路径。 如果我们把顶点设定为0,那么它的搜索可以表示为下图:

无向图

无向图

无向图

代码实现如下:

public class DepthFirstPaths {
    // 索引代表顶点,值表示当前顶点是否已经被搜索
    private boolean[] marked;
    //起点
    private int s;
    //索引代表顶点,值代表从起点s到当前顶点路径上的最后一个顶点
    private Integer[] edgeTo;

    public DepthFirstPaths(Graph G,int s){
        this.marked = new boolean[G.V()];
        this.s = s;
        this.edgeTo = new Integer[G.V()];
        dfs(G, s);
    }

    private void dfs(Graph G, int v){
        marked[v] = true;
        for (Integer w : G.adj(v)) {
            if(!marked[w]) {
                //到达顶点w的路径上的最后一个顶点是v
                edgeTo[w] = v;
                dfs(G, w);
            }
        }
    }

    //判断v顶点与s顶点是否存在路径
    public boolean hasPathTo(int v){
        return marked[v];
    }

    //找出从起点s到顶点v的路径(就是该路径经过的顶点)
    public Stack<Integer> pathTo(int v){

        if (!hasPathTo(v))
            return null;
        Stack<Integer> path = new Stack<>();
        path.push(v);
        while (edgeTo[v] != null) {
            int p = edgeTo[v];
            path.push(p);
            v = p;
        }
        return path;
    }
}

测试:

    private Graph graph = new Graph(6);
    {
        graph.addEdge(0,2);
        graph.addEdge(2,1);
        graph.addEdge(2,3);
        graph.addEdge(0,1);
        graph.addEdge(0,5);
        graph.addEdge(3,5);
        graph.addEdge(3,4);
        graph.addEdge(2,4);
    }

    @Test
    public void test() {
        DepthFirstPaths paths = new DepthFirstPaths(graph, 0);
        Stack<Integer> path = paths.pathTo(4);
        for (Integer integer : path) {
            System.out.println(integer);
        }
    }

无向图

广度优先遍历查找路径

深度优先搜索得到的路径不仅取决于图的结构,还取决于图的表示和递归调用的性质。

对于找出最短路径的那条,我们可以使用广度优先遍历(BFS)。

结合上面的深度优先遍历查找路径和前面广度优先搜索代码,不难得出广度优先遍历查找路径的代码:

/**
 * @author wen.jie
 * @date 2021/8/27 14:52
 */
public class BreadthFirstPaths {

    //索引代表顶点,值代表当前顶点是否已经被搜索
    private boolean[] marked;
    //记录有多少顶点与s顶点相通
    private int count;
    //用来存储待搜索邻接表的点
    private Queue<Integer> waitSearch;
    //索引代表顶点,值代表从起点s到当前顶点路径上的最后一个顶点
    private Integer[] edgeTo;

    public BreadthFirstPaths(Graph G, int s) {
        this.marked = new boolean[G.V()];
        this.waitSearch = new Queue<>();
        this.edgeTo = new Integer[G.V()];
        bfs(G, s);
    }

    //深度优先搜索找出G图中v顶点的所有相通顶点
    private void bfs(Graph G, int v) {
        //标记起点
        marked[v] = true;
        //入队列,待搜索
        waitSearch.enqueue(v);
        while (!waitSearch.isEmpty()) {
            //出队列
            Integer wait = waitSearch.dequeue();
            for (Integer w : G.adj(wait)) {
                if (!marked[w]) { //对于每个未被标记的相邻顶点
                    edgeTo[w] = wait; //保存最短路径的最后一条边
                    marked[w] = true; //标记,因为最短路径已知
                    waitSearch.enqueue(w); //入队列
                }
            }
        }
        count++;
    }

    //判断w顶点与s顶点是否相通
    public boolean hasPathTo(int w){
        return marked[w];
    }

    //获取与顶点s相通的所有顶点的总数
    public int count() {
        return this.count;
    }

    //找出从起点s到顶点v的路径(就是该路径经过的顶点)
    public Stack<Integer> pathTo(int v){

        if (!hasPathTo(v))
            return null;
        Stack<Integer> path = new Stack<>();
        path.push(v);
        while (edgeTo[v] != null) {
            int p = edgeTo[v];
            path.push(p);
            v = p;
        }
        return path;
    }

}

测试:

        BreadthFirstPaths paths = new BreadthFirstPaths(graph, 1);
        Stack<Integer> path = paths.pathTo(3);
        for (Integer integer : path) {
            System.out.println(integer);
        }

下面是广度优先遍历的处理样图:

无向图

无向图

无向图

命题:对于从s可达的任意顶点v,广度优先搜索都能找到一条从s到v的最短路径(没有其他从s到v的路径所含的边比这条路径更少)

证明:由归纳易得队列总是包含零个或多个到起点的距离为k的顶点,之后是零个或多个到起点的举例为k+1的顶点,其中k为整数,起始值为0。这意味着顶点是按照它们和s的距离的顺序加入队列或者离开队列的。从顶点v加入队列到它离开队列之前,不可能找出到v的更短的路径,而在v离开队列之后发现的所有能够到达v的路径不可能短于v在树中的路径长度。

本篇所有代码均已上传至:https://gitee.com/wj204811/algorithm

无向图

上一篇:struct和class的区别


下一篇:Git-02-文件状态的转换