洛谷P1265 公路修建(Prim)

To 洛谷.1265 公路修建

题目描述

某国有n个城市,它们互相之间没有公路相通,因此交通十分不便。为解决这一“行路难”的问题,*决定修建公路。修建公路的任务由各城市共同完成。

修建工程分若干轮完成。在每一轮中,每个城市选择一个与它最近的城市,申请修建通往该城市的公路。*负责审批这些申请以决定是否同意修建。

*审批的规则如下:

(1)如果两个或以上城市申请修建同一条公路,则让它们共同修建;

(2)如果三个或以上的城市申请修建的公路成环。如下图,A申请修建公路AB,B申请修建公路BC,C申请修建公路CA。则*将否决其中最短的一条公路的修建申请;

洛谷P1265 公路修建(Prim)

(3)其他情况的申请一律同意。

一轮修建结束后,可能会有若干城市可以通过公路直接或间接相连。这些可以互相:连通的城市即组成“城市联盟”。在下一轮修建中,每个“城市联盟”将被看作一个城市,发挥一个城市的作用。

当所有城市被组合成一个“城市联盟”时,修建工程也就完成了。

你的任务是根据城市的分布和前面讲到的规则,计算出将要修建的公路总长度。

输入输出格式

输入格式:

第一行一个整数n,表示城市的数量。(n≤5000)

以下n行,每行两个整数x和y,表示一个城市的坐标。(-1000000≤x,y≤1000000)

输出格式:

一个实数,四舍五入保留两位小数,表示公路总长。(保证有惟一解)

输入输出样例

输入样例#1:
4
0 0
1 2
-1 2
0 4
输出样例#1:
6.47

说明

修建的公路如图所示:洛谷P1265 公路修建(Prim)

思路:

  规则2是没有用的,因为不可能存在三个及以上个城市形成环。按“轮”处理也没有必要,因此这就成了一道求最小生成树的题。

  如果用Kruskal需用5000*5000的矩阵先计算出边,肯定是超内存的。所以选择Prim,在求最小生成树过程中计算两点距离。

代码:

 #include<cmath>
#include<cstdio>
using namespace std;
const int N=; int n,x[N],y[N];
double Ans,Min[N];
bool vis[N]; void read(int &now)
{
now=;bool f=;char c=getchar();
while(c>''||c<'')
{
if(c=='-')f=;
c=getchar();
}
while(c>=''&&c<='')now=(now<<)+(now<<)+c-'',c=getchar();
now= f?-now:now;
} double Calu(int a1,int b1,int a2,int b2)
{
return sqrt((double)(a1-a2)*(a1-a2)+(double)(b1-b2)*(b1-b2));
//因为这里的自乘很可能爆int,改成longlong也不是不可以但耗内存,so 转换成double
} int main()
{
read(n);
for(int i=;i<=n;++i)
read(x[i]),read(y[i]),Min[i]=1e9;
Min[]=;
for(int i=;i<=n;++i)
{
double k=1e9;int cur=;
for(int j=;j<=n;++j)
if(!vis[j] && k>Min[j])
{
k=Min[j];cur=j;
}
vis[cur]=;
Ans+=k;
for(int j=;j<=n;++j)
{
if(vis[j])continue;
double t=Calu(x[cur],y[cur],x[j],y[j]);
if(Min[j]>t)
Min[j]=t;
}
}
printf("%.2lf",Ans);
return ;
}
上一篇:Yii PHP 框架分析(二)


下一篇:leetcode 515 在每个树行中找最大值