5859. 差的绝对值为 K 的数对数目:
给你一个整数数组 nums 和一个整数 k ,请你返回数对 (i, j) 的数目,满足 i < j 且 |nums[i] - nums[j]| == k 。
|x| 的值定义为:
- 如果 x >= 0 ,那么值为 x 。
- 如果 x < 0 ,那么值为 -x 。
样例 1
输入:
nums = [1,2,2,1], k = 1
输出:
4
解释:
差的绝对值为 1 的数对为:
[1,2,2,1]
[1,2,2,1]
[1,2,2,1]
[1,2,2,1]
样例 2
输入:
nums = [1,3], k = 3
输出:
0
解释:
没有任何数对差的绝对值为 3 。
样例 3
输入:
nums = [3,2,1,5,4], k = 2
输出:
3
解释:
差的绝对值为 2 的数对为:
[3,2,1,5,4]
[3,2,1,5,4]
[3,2,1,5,4]
提示
- 1 <= nums.length <= 200
- 1 <= nums[i] <= 100
- 1 <= k <= 99
分析
- 这道题直接照做是可以的,双层循环,O(n2)的时间复杂度。
- 但是做算法,就要寻求更快的方法。答案只要计数,也就是不关心答案对应的数组下标,所以我们可以从计数的角度考虑。在提示里已经给出nums[i]的范围,所以我们可以正向推导,即直接看满足答案的数对有多少,而不是双层循去判断当前数对是否满足条件。
题解
java
class Solution {
public int countKDifference(int[] nums, int k) {
// 统计1到100分别有多少个
int[] counter = new int[101];
for (int num : nums) {
counter[num]++;
}
int ans = 0;
// 从小到大循环,不要考虑counter[i - k],因为counter[i + k]已经在之前统计过
for (int i = 1; i + k < 101; ++i) {
ans += counter[i] * counter[i + k];
}
return ans;
}
}
c
int countKDifference(int* nums, int numsSize, int k){
// 统计1到100分别有多少个
int counter[101] = {0};
for (int i = 0; i < numsSize; ++i) {
++counter[nums[i]];
}
int ans = 0;
// 从小到大循环,不要考虑counter[i - k],因为counter[i + k]已经在之前统计过
for (int i = 1; i + k < 101; ++i) {
ans += counter[i] * counter[i + k];
}
return ans;
}
c++
class Solution {
public:
int countKDifference(vector<int>& nums, int k) {
// 统计1到100分别有多少个
int counter[101] = {0};
for (const auto num : nums) {
++counter[num];
}
int ans = 0;
// 从小到大循环,不要考虑counter[i - k],因为counter[i + k]已经在之前统计过
for (int i = 1; i + k < 101; ++i) {
ans += counter[i] * counter[i + k];
}
return ans;
}
};
python
class Solution:
def countKDifference(self, nums: List[int], k: int) -> int:
# 统计1到100分别有多少个
counter = [0] * 101
for num in nums:
counter[num] += 1
ans = 0
# 从小到大循环,不要考虑counter[i - k],因为counter[i + k]已经在之前统计过
for i in range(1, 101 - k):
ans += counter[i] * counter[i + k]
return ans
go
func countKDifference(nums []int, k int) int {
// 统计1到100分别有多少个
var counter [101]int
for _, num := range nums {
counter[num]++
}
ans := 0
// 从小到大循环,不要考虑counter[i - k],因为counter[i + k]已经在之前统计过
for i := 1; i + k < 101; i++ {
ans += counter[i] * counter[i + k]
}
return ans
}
rust
impl Solution {
pub fn count_k_difference(nums: Vec<i32>, k: i32) -> i32 {
// 统计1到100分别有多少个
let mut counter = vec![0;101];
nums.iter().for_each(|n| { counter[*n as usize] += 1; });
let mut ans = 0;
// 从小到大循环,不要考虑counter[i - k],因为counter[i + k]已经在之前统计过
(1..101 - k).for_each(|i| { ans += counter[i as usize] * counter[(i + k) as usize];});
ans
}
}
原题传送门:https://leetcode-cn.com/problems/count-number-of-pairs-with-absolute-difference-k/
非常感谢你阅读本文~
放弃不难,但坚持一定很酷~
希望我们大家都能每天进步一点点~
本文由 二当家的白帽子:https://developer.aliyun.com/profile/sqd6avc7qgj7y 博客原创~