DirectByteBuffer内存释放

网络编程为避免频繁的在用户空间与内核空间拷贝数据,通常会直接从内核空间中申请内存,存放数据,在Java中,把内核空间的内存称之为直接内存,nio包中的ByteBuffer的allocateDirect方法,就是申请直接内存

DirectByteBuffer内存释放

DirectByteBuffer对象是ByteBuffer的子类,对于直接内存的分配,就是在这个类中实现的。

java中


  • 直接内存的申请与释放是通过Unsafe类的allocateMemory方法和freeMemory方法
  • 处置从allocateMemory或reallocateMemory获得的本地内存块。 传递给此方法的地址可以为null,在这种情况下,不采取任何措施。

DirectByteBuffer内存释放

分配给定大小的新本地内存块(以字节为单位)。 存储器的内容未初始化; 它们通常是垃圾。 结果本机指针永远不会为零,并且将针对所有值类型进行对齐。 通过调用freeMemory处理此内存,或使用reallocateMemory调整其大小。

DirectByteBuffer内存释放

  • 直接内存的释放,必须手工调用freeMemory方法,因为JVM只能帮我们管理堆内存,直接内存不在其管理范围之内。


DirectByteBuffer帮我们简化了直接内存的使用,我们不需要直接操作Unsafe类来进行直接内存的申请与释放,那么其是如何实现的呢?


直接内存的申请:


在DirectByteBuffer实例通过构造方法创建的时候,会通过Unsafe类的allocateMemory方法 帮我们申请直接内存资源。


直接内存的释放:


DirectByteBuffer本身是一个Java对象,其是位于堆内存中的,JDK的GC机制可以自动帮我们回收,但是其申请的直接内存,不再GC范围之内,无法自动回收。好在JDK提供了一种机制,可以为堆内存对象注册一个钩子函数(其实就是实现Runnable接口的子类),当堆内存对象被GC回收的时候,会回调run方法,我们可以在这个方法中执行释放DirectByteBuffer引用的直接内存,即在run方法中调用Unsafe 的freeMemory 方法。注册是通过sun.misc.Cleaner类来实现的。

class DirectByteBuffer extends MappedByteBuffer  implements DirectBuffer
{
    ....
    //构造方法
    DirectByteBuffer(int cap) {                   // package-private
    
        super(-1, 0, cap, cap);
        boolean pa = VM.isDirectMemoryPageAligned();
        int ps = Bits.pageSize();
        long size = Math.max(1L, (long)cap + (pa ? ps : 0));//对申请的直接内存大小,进行重新计算
        Bits.reserveMemory(size, cap);
    
        long base = 0;
        try {
            base = unsafe.allocateMemory(size); //分配直接内存,base表示的是直接内存的开始地址
        } catch (OutOfMemoryError x) {
            Bits.unreserveMemory(size, cap);
            throw x;
        }
        unsafe.setMemory(base, size, (byte) 0);
        if (pa && (base % ps != 0)) {
            // Round up to page boundary
            address = base + ps - (base & (ps - 1));
        } else {
            address = base;
        }
        cleaner = Cleaner.create(this, new Deallocator(base, size, cap));//注册钩子函数,释放直接内存
        att = null;
    
    }
      ....
}

可以看到构造方法中的确是用了unsafe.allocateMemory方法帮我们分配了直接内存,另外,在构造方法的最后,通过 Cleaner.create方法注册了一个钩子函数,用于清除直接内存的引用。


Cleaner.create方法声明如下所示:


public static Cleaner create(Object heapObj, Runnable task)

其中第一个参数是一个堆内存对象,第二个参数是一个Runnable任务,表示这个堆内存对象被回收的时候,需要执行的回调方法。我们可以看到在DirectByteBuffer的最后一行中,传入的这两个参数分别是this,和一个Deallocator(实现了Runnable接口),其中this表示就是当前DirectByteBuffer实例,也就是当前DirectByteBuffer被回收的时候,回调Deallocator的run方法


Deallocator就是用于清除DirectByteBuffer引用的直接内存,代码如下所示:

private static class Deallocator
    implements Runnable
{
 
    private static Unsafe unsafe = Unsafe.getUnsafe();
 
    private long address;
    private long size;
    private int capacity;
 
    private Deallocator(long address, long size, int capacity) {
        assert (address != 0);
        this.address = address;
        this.size = size;
        this.capacity = capacity;
    }
 
    public void run() {
        if (address == 0) {
            // Paranoia
            return;
        }
        unsafe.freeMemory(address);//清除直接内存
        address = 0;
        Bits.unreserveMemory(size, capacity);
    }
 
}

System.gc

在DirectByteBuffer实例创建时,分配内存之前调用了Bits.reserveMemory,如果分配失败调用了Bits.unreserveMemory,同时在Deallocator释放完直接内存的时候,也调用了Bits.unreserveMemory方法。


这两个方法,主要是记录jdk已经使用的直接内存的数量,当分配直接内存时,需要进行增加,当释放时,需要减少,源码如下:



static void reserveMemory(long size, int cap) {
    //如果直接有足够多的直接内存可以用,直接增加直接内存引用的计数
    synchronized (Bits.class) {
        if (!memoryLimitSet && VM.isBooted()) {
            maxMemory = VM.maxDirectMemory();
            memoryLimitSet = true;
        }
        // -XX:MaxDirectMemorySize limits the total capacity rather than the
        // actual memory usage, which will differ when buffers are page
        // aligned.
        if (cap <= maxMemory - totalCapacity) {//维护已经使用的直接内存的数量
            reservedMemory += size;
            totalCapacity += cap;
            count++;
            return;
        }
    }
   //如果没有有足够多的直接内存可以用,先进行垃圾回收
    System.gc();
    try {
        Thread.sleep(100);//休眠100秒,等待垃圾回收完成
    } catch (InterruptedException x) {
        // Restore interrupt status
        Thread.currentThread().interrupt();
    }
    synchronized (Bits.class) {//休眠100毫秒后,增加直接内存引用的计数
        if (totalCapacity + cap > maxMemory)
            throw new OutOfMemoryError("Direct buffer memory");
        reservedMemory += size;
        totalCapacity += cap;
        count++;
    }
 
}
//释放内存时,减少引用直接内存的计数
static synchronized void unreserveMemory(long size, int cap) {
    if (reservedMemory > 0) {
        reservedMemory -= size;
        totalCapacity -= cap;
        count--;
        assert (reservedMemory > -1);
    }
}

通过上面代码的分析,我们事实上可以认为Bits类是直接内存的分配担保,当有足够的直接内存可以用时,增加直接内存应用计数,否则,调用System.gc,进行垃圾回收,需要注意的是,System.gc只会回收堆内存中的对象,但是我们前面已经讲过,DirectByteBuffer对象被回收时,那么其引用的直接内存也会被回收,试想现在刚好有其他的DirectByteBuffer可以被回收,那么其被回收的直接内存就可以用于本次DirectByteBuffer直接的内存的分配。


一些文章讲解在使用Nio的时候,不要禁用System.gc,也就是启动JVM的时候,不要传入-XX:+DisableExplicitGC参数,因为这样可能会造成直接内存溢出。

因为直接内存的释放与获取比堆内存更加耗时,每次创建DirectByteBuffer实例分配直接内存的时候,都调用System.gc,可以让已经使用完的DirectByteBuffer得到及时的回收。


虽然System.gc只是建议JVM垃圾回收,可能JVM并不会立即回收,但频繁建议,JVM不会视而不见。这不是绝对的,因为System.gc导致FullGC,会暂停用户线程,对于一些要求延时比较短的应用,不希望JVM频繁FullGC。


建议禁用System.gc,调大最大可以使用的直接内存。

-XX:+DisableExplicitGC -XX:MaxDirectMemorySize=256M
上一篇:Windows 下安装 MongoDB


下一篇:Linux下c实现ls