Rightmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6515 Accepted Submission(s): 2454
Problem Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2 3 4
Sample Output
7 6
//Right most Digital //拿到此题第一感觉可以通过两个数相乘然后求得最后一位,但是发现其实结果只和最后一位 //有关,用整个数来求得最后一位未免太过麻烦,便考虑去寻找规律 //便是 0所有相乘都为0,1所有相乘都为1,2相乘便是48624862...然后每一个都是循环关系, //循环周期分别为1,1,4,4,2,1,1,4,4,2 //然后问题便转化为求末位,找规律,得结果 #include<iostream> #include<string> using namespace std; #define MAX 10000 long int n,m; int main() { int t,u; int a3[4]={1,3,9,7},a4[2]={6,4}; int a2[4]={6,2,4,8},a7[4]={1,7,9,3}; int a8[4]={6,8,4,2},a9[2]={1,9}; int x[10]={1,1,4,4,2,1,1,4,4,2};//0-9分别循环次数为此数组对应数位 while(cin>>t) { while(t--) { cin>>n;//幂次,n的n次方 while(n!=0) { m=n%10; n=n/10; } //除10取余,获取最后一位数字 u=m; u=u%x[m];//u即为所除余数 if(m==0||m==1||m==5||m==6) { cout<<m<<endl; } else if(m==2) cout<<a2[u]<<endl; else if(m==3) cout<<a3[u]<<endl; else if(m==4) cout<<a4[u]<<endl; else if(m==7) cout<<a7[u]<<endl; else if(m==8) cout<<a8[u]<<endl; else if(m==9) cout<<a9[u]<<endl; } } }