AI Studio : 利用Paddle框架中的极简框架识别MNIST

AI Studio : 利用Paddle框架中的极简框架识别MNIST

简 介: ※通过测试网络上的这个极简的Paddle识别MNIST程序,也就是使用了一个非常简单的线性回归网络,初步熟悉了Paddle下的网络架构方式。对于如果从numpy到Paddle的tensor转换程序中也给出了示例。

关键词 AI StudioPaddleMNIST

建立工程 文章目录 调入数据库 常见学术数据集合 极简工程 建立模型 训练模型 训练结果 测试模型 网络上参考程序 识别总结 数据转换 从numpy到tensor 从tensor到numpy

 

§01 立工程


在AI Studio中建立基于NoteBook工程环境,选择其中的MNIST数据库。

在哪里能找到最后的版本的示例程序? AI Studio-MNIST 对于基于AI Studio中Paddle框架对于MNIST数据库进行实验。首先试验了其中的极简测试方法。但在其中过程中还是遇到了一些问题。

后来经过询问,可以知道现在书上的代码由于书籍出版比较慢,因此跟班上AI Studio代码的升级。建议还是通过观察 AI Studio 手写数字识别案例 ,根据其中的的代码进行测试。

AI Studio : 利用Paddle框架中的极简框架识别MNIST

▲ 图1.1 百度AI Studio 手写数字识别案例(上):讲师:淘淘

一、调入数据库

import matplotlib.pyplot as plt
from numpy import *
import math,time

import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import os

train_dataset = paddle.vision.datasets.MNIST(mode='train')
import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import os

train_dataset = paddle.vision.datasets.MNIST(mode='train')

train_data0 = array(train_dataset[0][0])
train_label0 = array(train_dataset[0][1])

plt.figure('Image')
plt.figure(figsize=(5,5))
plt.imshow(train_data0, cmap=plt.cm.binary)
plt.axis('on')
plt.title('MNIST image')
plt.show()

print('Image shape: {}'.format(train_data0.shape))
print('Image label shape: {} and data: {}'.format(train_label0.shape, train_label0))

AI Studio : 利用Paddle框架中的极简框架识别MNIST

▲ 图1.1.1 显示数据库图片

AI Studio : 利用Paddle框架中的极简框架识别MNIST

▲ 图1.1.2 显示MNIST中的数字

2、常见学术数据集合

在paddle.vision.datasets存在一些常见到的学术数据集合。

(1)paddle.vision 中的数据集合

dir(paddle.vision.datasets)
['Cifar10',
 'Cifar100',
 'DatasetFolder',
 'FashionMNIST',
 'Flowers',
 'ImageFolder',
 'MNIST',
 'VOC2012',
 '__all__',
 '__builtins__',
 '__cached__',
 '__doc__',
 '__file__',
 '__loader__',
 '__name__',
 '__package__',
 '__path__',
 '__spec__',
 'cifar',
 'flowers',
 'folder',
 'mnist',
 'voc2012']

(2)paddle.text 数据集合

dir(paddle.text.datasets)
['Conll05st',
 'Imdb',
 'Imikolov',
 'Movielens',
 'UCIHousing',
 'WMT14',
 'WMT16',
 '__all__',
 '__builtins__',
 '__cached__',
 '__doc__',
 '__file__',
 '__loader__',
 '__name__',
 '__package__',
 '__path__',
 '__spec__',
 'conll05',
 'imdb',
 'imikolov',
 'movielens',
 'uci_housing',
 'wmt14',
 'wmt16']

二、极简工程

1、建立模型

class MNIST(paddle.nn.Layer):
    def __init__(self, ):
        super(MNIST, self).__init__()

        self.fc = paddle.nn.Linear(in_features=784, out_features=1)

    def forward(self, inputs):
        outputs = self.fc(inputs)
        return outputs

def norm_img(img):
    assert len(img.shape) == 3

    batch_size, img_h, img_w = img.shape[0], img.shape[1], img.shape[2]

    img = img/255
    img = paddle.reshape(img, [batch_size, img_h*img_w])
    return img

import paddle
paddle.vision.set_image_backend('cv2')

def train(model):
    model.train()

    train_loader = paddle.io.DataLoader(paddle.vision.datasets.MNIST(mode='train'),
                                        batch_size=16,
                                        shuffle=True)

    opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())

    EPOCH_NUM = 10

    for epoch in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            images = norm_img(data[0]).astype('float32')
            labels = data[1].astype('float32')

            predicts = model(images)

            loss = F.square_error_cost(predicts, labels)
            avg_loss = paddle.mean(loss)

            if batch_id%1000 == 0:
                print('epoch_id: {}, batch_id: {}, loss is: {}'.format(epoch, batch_id, avg_loss.numpy()))

            avg_loss.backward()
            opt.step()
            opt.clear_grad()

2、训练模型

model = MNIST()
train(model)
paddle.save(model.state_dict(), './mnist.pdparms')

3、训练结果

epoch_id: 0, batch_id: 0, loss is: [19.446383]
epoch_id: 0, batch_id: 1000, loss is: [4.280066]
epoch_id: 0, batch_id: 2000, loss is: [4.089441]
epoch_id: 0, batch_id: 3000, loss is: [2.5934415]
epoch_id: 1, batch_id: 0, loss is: [5.005641]
epoch_id: 1, batch_id: 1000, loss is: [2.2887247]
epoch_id: 1, batch_id: 2000, loss is: [2.5260096]
epoch_id: 1, batch_id: 3000, loss is: [4.377707]
epoch_id: 2, batch_id: 0, loss is: [3.2349763]
epoch_id: 2, batch_id: 1000, loss is: [2.8085265]
epoch_id: 2, batch_id: 2000, loss is: [2.2175798]
epoch_id: 2, batch_id: 3000, loss is: [5.4343185]
epoch_id: 3, batch_id: 0, loss is: [3.1255033]
epoch_id: 3, batch_id: 1000, loss is: [2.1449356]
epoch_id: 3, batch_id: 2000, loss is: [7.3950243]
epoch_id: 3, batch_id: 3000, loss is: [5.631453]
epoch_id: 4, batch_id: 0, loss is: [2.1221619]
epoch_id: 4, batch_id: 1000, loss is: [3.1189494]
epoch_id: 4, batch_id: 2000, loss is: [3.672319]
epoch_id: 4, batch_id: 3000, loss is: [4.128253]
epoch_id: 5, batch_id: 0, loss is: [7.7472067]
epoch_id: 5, batch_id: 1000, loss is: [2.6192496]
epoch_id: 5, batch_id: 2000, loss is: [3.7988458]
epoch_id: 5, batch_id: 3000, loss is: [2.1571586]
epoch_id: 6, batch_id: 0, loss is: [6.8091993]
epoch_id: 6, batch_id: 1000, loss is: [3.2879863]
epoch_id: 6, batch_id: 2000, loss is: [2.2202625]
epoch_id: 6, batch_id: 3000, loss is: [4.0542073]
epoch_id: 7, batch_id: 0, loss is: [2.4702597]
epoch_id: 7, batch_id: 1000, loss is: [3.267303]
epoch_id: 7, batch_id: 2000, loss is: [3.925469]
epoch_id: 7, batch_id: 3000, loss is: [4.502317]
epoch_id: 8, batch_id: 0, loss is: [1.6059736]
epoch_id: 8, batch_id: 1000, loss is: [5.4941883]
epoch_id: 8, batch_id: 2000, loss is: [1.0239292]
epoch_id: 8, batch_id: 3000, loss is: [2.333592]
epoch_id: 9, batch_id: 0, loss is: [2.7579784]
epoch_id: 9, batch_id: 1000, loss is: [1.5081773]
epoch_id: 9, batch_id: 2000, loss is: [4.925281]
epoch_id: 9, batch_id: 3000, loss is: [3.8142138]

AI Studio : 利用Paddle框架中的极简框架识别MNIST

▲ 图1.2.1 训练过程中误差下降曲线

4、测试模型

(1)查看测试集合结果

for batch_id, data in enumerate(test_loader()):
    images = norm_img(data[0]).astype('float32')
    labels = data[1].astype('float32')

    predicts = model(images)

    loss = F.square_error_cost(predicts, labels)
    avg_loss = paddle.mean(loss)

    print(predicts)
    print(labels)
    print(loss)
    print(avg_loss)
    
    break

运行结果

Tensor(shape=[16, 1], dtype=float32, place=CPUPlace, stop_gradient=False,
       [[2.06245565],
        [1.97789598],
        [5.32851791],
        [2.76517129],
        [4.77754116],
        [1.96410847],
        [1.70493352],
        [2.46705198],
        [7.93237495],
        [5.77034092],
        [4.87852144],
        [0.48723245],
        [4.39118719],
        [1.38979697],
        [1.77543545],
        [1.47215056]])
Tensor(shape=[16, 1], dtype=float32, place=CPUPlace, stop_gradient=True,
       [[0.],
        [1.],
        [5.],
        [5.],
        [6.],
        [1.],
        [1.],
        [1.],
        [7.],
        [4.],
        [2.],
        [0.],
        [1.],
        [1.],
        [0.],
        [1.]])
Tensor(shape=[16, 1], dtype=float32, place=CPUPlace, stop_gradient=False,
       [[4.25372314],
        [0.95628053],
        [0.10792402],
        [4.99445915],
        [1.49440563],
        [0.92950511],
        [0.49693128],
        [2.15224147],
        [0.86932307],
        [3.13410687],
        [8.28588581],
        [0.23739545],
        [11.50015068],
        [0.15194169],
        [3.15217113],
        [0.22292615]])
Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=False,
       [2.68371058])

(2)测试预测结果

def showimg(img):
    imgdata = img.numpy()
    print(imgdata.shape)

    imgblock = [i.reshape([28,28]) for i in imgdata]
    imgb1 = concatenate(imgblock[:8], axis=1)
    imgb2 = concatenate(imgblock[8:], axis=1)
    imgb = concatenate((imgb1, imgb2))

    plt.figure(figsize=(10,10))
    plt.imshow(imgb)
    plt.axis('off')
    plt.show()

AI Studio : 利用Paddle框架中的极简框架识别MNIST

▲ 图1.2.2 测试集合MNIST图片

预测结果:

for batch_id, data in enumerate(test_loader()):
    showimg(images)

    predicts = model(images)
    print(labels.numpy().flatten().T)
    print([p for p in predicts.numpy().flatten().T])
3. 9. 4. 3. 0. 7. 0. 9. 9. 5. 6. 7. 1. 7. 0. 0.
3.3602648 8.111923 5.3560495 5.2887278 4.218868 5.3987856 2.5647051 8.387244 8.198596 3.977576 3.7429187 7.7407055 6.2851562 4.435977 2.9352028 3.7802896

5、网络上参考程序

import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import os
import numpy as np
import matplotlib.pyplot as plt

train_dataset = paddle.vision.datasets.MNIST(mode='train')

train_data0 = np.array(train_dataset[0][0])
train_label_0 = np.array(train_dataset[0][1])

import matplotlib.pyplot as plt
plt.figure("Image") # 图像窗口名称
plt.figure(figsize=(2,2))
plt.imshow(train_data0, cmap=plt.cm.binary)
plt.axis('on') # 关掉坐标轴为 off
plt.title('image') # 图像题目
plt.show()

print("图像数据形状和对应数据为:", train_data0.shape)
print("图像标签形状和对应数据为:", train_label_0.shape, train_label_0)
print("\n打印第一个batch的第一个图像,对应标签数字为{}".format(train_label_0))

class MNIST(paddle.nn.Layer):
    def __init__(self):
        super(MNIST, self).__init__()

        # 定义一层全连接层,输出维度是1
        self.fc = paddle.nn.Linear(in_features=784, out_features=1)

    # 定义网络结构的前向计算过程
    def forward(self, inputs):
        outputs = self.fc(inputs)
        return outputs

model = MNIST()

def train(model):
    # 启动训练模式
    model.train()
    # 加载训练集 batch_size 设为 16
    train_loader = paddle.io.DataLoader(paddle.vision.datasets.MNIST(mode='train'),
                                        batch_size=16,
                                        shuffle=True)
    # 定义优化器,使用随机梯度下降SGD优化器,学习率设置为0.001
    opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())

def norm_img(img):
    # 验证传入数据格式是否正确,img的shape为[batch_size, 28, 28]
    assert len(img.shape) == 3
    batch_size, img_h, img_w = img.shape[0], img.shape[1], img.shape[2]
    # 归一化图像数据
    img = img / 255
    # 将图像形式reshape为[batch_size, 784]
    img = paddle.reshape(img, [batch_size, img_h*img_w])

    return img

import paddle
paddle.vision.set_image_backend('cv2')

model = MNIST()

def train(model):
    # 启动训练模式
    model.train()
    # 加载训练集 batch_size 设为 16
    train_loader = paddle.io.DataLoader(paddle.vision.datasets.MNIST(mode='train'),
                                        batch_size=16,
                                        shuffle=True)
    # 定义优化器,使用随机梯度下降SGD优化器,学习率设置为0.001
    opt = paddle.optimizer.SGD(learning_rate=0.001, parameters=model.parameters())
    EPOCH_NUM = 10
    for epoch in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            images = norm_img(data[0]).astype('float32')
            labels = data[1].astype('float32')

            #前向计算的过程
            predicts = model(images)

            # 计算损失
            loss = F.square_error_cost(predicts, labels)
            avg_loss = paddle.mean(loss)

            #每训练了1000批次的数据,打印下当前Loss的情况
            if batch_id % 1000 == 0:
                print("epoch_id: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, avg_loss.numpy()))

            #后向传播,更新参数的过程
            avg_loss.backward()
            opt.step()
            opt.clear_grad()

train(model)
paddle.save(model.state_dict(), './mnist.pdparams')
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image

img_path = './work/下载.png'
im = Image.open('./work/下载.png')
plt.imshow(im)
plt.show()
im = im.convert('L')
print('原始图像shape: ', np.array(im).shape)
im = im.resize((28, 28), Image.ANTIALIAS)
plt.imshow(im)
plt.show()
print("采样后图片shape: ", np.array(im).shape)

def load_image(img_path):
    # 从img_path中读取图像,并转为灰度图
    im = Image.open(img_path).convert('L')
    # print(np.array(im))
    im = im.resize((28, 28), Image.ANTIALIAS)
    im = np.array(im).reshape(1, -1).astype(np.float32)
    # 图像归一化,保持和数据集的数据范围一致
    im = 1 - im / 255
    return im

model = MNIST()
params_file_path = 'mnist.pdparams'
img_path = './work/下载.png'
param_dict = paddle.load(params_file_path)
model.load_dict(param_dict)
model.eval()
tensor_img = load_image(img_path)
result = model(paddle.to_tensor(tensor_img))
print('result',result)
print("本次预测的数字是", result.numpy().astype('int32'))

 

别总结 ※


通过测试网络上的这个极简的Paddle识别MNIST程序,也就是使用了一个非常简单的线性回归网络,初步熟悉了Paddle下的网络架构方式。对于如果从numpy到Paddle的tensor转换程序中也给出了示例。

一、数据转换

1、从numpy到tensor

paddle.to_tensor()

2、从tensor到numpy

data.numpy()


■ 相关文献链接:

● 相关图表链接:

上一篇:pytorch----gradient descent


下一篇:Pytorch与深度学习自查手册4-训练、可视化、日志输出、保存模型