JDK8的异步处理方式-CompletableFuture的使用

一、背景

jdk8中加入了实现类CompletableFuture,用于异步编程。底层做任务使用的是ForkJoin, 顾名思义,是将任务的数据集分为多个子数据集,而每个子集,都可以由独立的子任务来处理,最后将每个子任务的结果汇集起来。它是ExecutorService接口的一个实现,它把子任务分配给线程池(称为ForkJoinPool)中的工作线程。从api文档看,它实现了2个接口CompletionStage和Future。CompletionStage支持lambda表达式,接口的方法的功能都是在某个阶段得到结果后要做的事情。因此,CompletableFuture不仅拥有Future的所有特性,而且还内置了lambda表达式,支持异步回调,结果转换等功能,它有以下Future实现不了的功能:

  1. 合并两个相互独立的异步计算的结果

  2. 等待异步任务的所有任务都完成

  3. 等待异步任务的其中一个任务完成就返回结果

  4. 任务完成后调用回调方法

  5. 任务完成的结果可以用于下一个任务。

  6. 任务完成时发出通知提供原生的异常处理api

二、代码

     

package com.example.demo;


import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.concurrent.*;

public class CompletableFutureDemo {
     //CPU核数
    private static final int AVAILABLE_PROCESSORS = Runtime.getRuntime().availableProcessors();
    private static final ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(AVAILABLE_PROCESSORS,
            3 * AVAILABLE_PROCESSORS,
            3, TimeUnit.SECONDS,
            new LinkedBlockingDeque<>(20));

    public static void main(String[] args) throws Exception {
        long startTime = System.currentTimeMillis();
        System.out.println("demo start....." + startTime);
        demo3();
        System.out.println("demo end.....costTime = " + (System.currentTimeMillis() - startTime));
    }

    /**
     * 基于allOf,并行处理多个任务,等待所有任务执行完毕后返回
     */

    public static void demo3() throws Exception {
       //用户整体接收各个任务的返回值
        Map<String,String> dataMap = new ConcurrentHashMap<>();
        List<CompletableFuture<String>> futureList = new ArrayList<>();
        futureList.add(doSomethingA("A", dataMap));
        futureList.add(doSomethingB("B", dataMap));
        futureList.add(doSomethingC("C", dataMap));
        CompletableFuture<Void> result = CompletableFuture.allOf(futureList.toArray(new CompletableFuture[0]));
        try {
                result.get(3, TimeUnit.SECONDS);
        } catch (Exception e) {
            e.printStackTrace();
        }
        System.out.println("dataMap = " + dataMap);
       //结果为:{doSomeThingB=B, doSomeThingA=A}
    }

    /**
     * 基于thenCompose,第一个任务执行完后,第二个任务使用第一个任务的返回作为参数
     */
    public static void demo1() throws Exception {
        Map<String,String> dataMap = new HashMap<>();
        CompletableFuture<String> completableFuture = doSomethingA("A", dataMap)
                .thenCompose(id -> doSomethingB(id, dataMap));
        String result = completableFuture.get(3, TimeUnit.SECONDS);
        System.out.println("result = " + result);
        //结果为:A is done is done

    }

    /**
     * 基于thenCombine,当两个任务都完成后,使用两者的结果作为参数再执行一个异步任务
     */
    public static void demo2() throws Exception {
        Map<String,String> dataMap = new HashMap<>();
        CompletableFuture<String> completableFuture = doSomethingA("A", dataMap)
                .thenCombine(doSomethingB("B", dataMap), (a, b) -> a + " - " + b);
        String result = completableFuture.get(3, TimeUnit.SECONDS);
        System.out.println("result = " + result);
//结果为:A is done - B is done
    }

    /**
     * @param dataMap 用户整体接收方法的返回值
     * @return
     */
    public static CompletableFuture<String> doSomethingA(String taskId, Map<String,String> dataMap) {
        System.out.println("doSomethingA start....." + System.currentTimeMillis());
        return CompletableFuture.supplyAsync(() -> {
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            dataMap.put("doSomeThingA", "A");
            System.out.println(taskId + " is done and dataMap"+dataMap);
            return taskId + " is done";
        }, threadPoolExecutor);
    }

    public static CompletableFuture<String> doSomethingB(String taskId, Map<String,String> dataMap) {
        System.out.println("doSomethingB start....." + System.currentTimeMillis());
        return CompletableFuture.supplyAsync(() -> {
            try {
                Thread.sleep(100);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            dataMap.put("doSomeThingB", "B");
            System.out.println(taskId + " is done and dataMap"+dataMap);
            return taskId + " -> B is done";
        }, threadPoolExecutor);
    }

    public static CompletableFuture<String> doSomethingC(String taskId, Map<String,String> dataMap) {
        System.out.println("doSomethingC start....." + System.currentTimeMillis());
        return CompletableFuture.supplyAsync(() -> {
            try {
                Thread.sleep(500);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            dataMap.put("doSomeThingC", "C");
            System.out.println(taskId + " is done and dataMap"+dataMap);
            return taskId + " is done";
        }, threadPoolExecutor);

    }

}

三、效率比较

很明显,异步更快

package com.example.demo;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.CompletableFuture;

/**
 * @author d00018641
 * @date 2021/11/4 15:10
 */
public class TestDemo2 {
    private static final String key = "llllllllllllllllllllllll";
    public static void main(String[] args) {

        List<String> requestList = new ArrayList<>();
        requestList.add("3");
        requestList.add("4");
        requestList.add("5");
        requestList.add("6");
        // 响应参数list
        String[] returnArray = new String[requestList.size()];
        // 异步查询每一列,定义响应列数的futures
        List<CompletableFuture<String>> futures = new ArrayList<>();
        long startTime = System.currentTimeMillis();
        for (int i = 0; i < requestList.size(); i++) {
            final int a = i;
            CompletableFuture<String> tf = CompletableFuture.supplyAsync(() -> {
                return calc(requestList.get(a));
            }).whenComplete((m, e) -> returnArray[a] = m);
            futures.add(tf);
        }
        CompletableFuture.allOf(futures.toArray(new CompletableFuture[0])).join();
        //CompletableFuture end.....costTime = 147
        System.out.println("CompletableFuture end.....costTime = " + (System.currentTimeMillis() - startTime));
        long startTime1 = System.currentTimeMillis();
        for(int i = 0; i < requestList.size(); i++){
            returnArray[i] = calc(requestList.get(i));
        }
        //连续 end.....costTime = 432
        System.out.println("连续 end.....costTime = " + (System.currentTimeMillis() - startTime1));
        System.out.println(Arrays.asList(returnArray));

    }

    private static String calc(String source) {
        int as = Integer.parseInt(source);
        try {
            Thread.sleep(100);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return String.valueOf(Math.pow(as, 3));
    }
}

 

上一篇:CompletableFuture 异步编排


下一篇:Future和CompletableFuture的区别