DeepMind新论文:基于变分方法的自编码生成对抗网络

本文来自AI新媒体量子位(QbitAI)

最近,DeepMind公司的Mihaela Rosca、Balaji Lakshminarayanan和David Warde-Farley等人写了一篇题为“一种基于变分方法的自编码生成对抗网络(Variational Approaches for Auto-Encoding Generative Adversarial Networks)”的论文。

这篇文章利用变分推理,提出了一种将自动编码器和生成对抗网络融合起来的方法。

摘要

自动编码生成对抗网络结合了标准形式的GAN算法,通过自动编码器给出的重建损失(construction loss)来区分原始数据和模型的生成数据。这种模型的目的是确保基于所有可用数据进行训练,防止学习得到的生成模型出现模式崩溃问题。

在本文中,我们提出了一种规则,通过利用生成模型的层次结构,将自动编码器结合到生成对抗网络中。由基本原理可表明,变分推理可作为网络学习的基本方法,但是要将随机可能性替换为合成似然性,且将未知后验分布替换为隐含分布。本文使用了鉴别器来学习网络中的合成似然性和隐含后验分布。

于是,我们结合这两种方法中的最优点,开发出一种结合变分自动编码器和生成对抗网络的融合方法。我们设置了一个共同的优化目标,讨论了引导学习的约束条件,与大量现有研究相联系,并使用了一系列实验来系统地定量评估本文方法的效果。

更多实际性能及结果讨论请看论文:https://arxiv.org/abs/1706.04987

P.S.

他们给自己的方法起名叫“α-GAN”,理由是:GAN太多,拉丁字母前缀不够用了,只好用希腊字母了……

【完】

本文作者:王小新
原文发布时间:2017-06-17
上一篇:webpack 快速入门 系列 —— 实战一


下一篇:Arduino使用Stepper库驱动2byjs8步进电机及计算每步延时