研究内容
Given an RDF graph G and a natural language question qNL, our goal is to interpret qNL as a SPARQL query qS, by mapping the semantic items — relations(i.e. properties), entities and classes expressed by qNL to the corresponding triple patterns inqS.(给定一个 RDF 图 G 和一个自然语言问题 qNL,我们的目标是将 qNL 解释为一个 SPARQL 查询 qS,通过将 qNL 表示的语义项目——关系(即属性)、实体和类映射到相应的三重模式 inqS。)
系统架构
the system framework is separated into offline and online two parts.
- Offline Processing: To enable semantic relation extraction in online processing, a dictionary of the RDF relations and their natural language paraphrases is automatically built in advance.(离线处理:为了能够在在线处理中提取语义关系,预先自动构建 RDF 关系及其自然语言释义的字典。)
- During the online stage, the input question qNL is fed into the following four-step pipeline:(在线阶段,输入问题 qNL 被送入以下四步管道:)
- qNL is parsed into a dependency tree tNL.(qNL 被解析为依赖树 tNL)
- the phrases in qNL that mention any semantic relation are recognized in tNL with the help of the paraphrase dictionary. (在释义词典的帮助下,在 tNL 中可以识别 qNL 中提到任何语义关系的短语。)
- these phrases are mapped to the RDF fragments to find their matches of semantic items in the RDF graph G.(将这些短语映射到 RDF 片段以在 RDF 图 G 中找到它们的语义项匹配。)
- the RDF fragments are joined to compute a reasonable subgraph of graph G, by checking their compatibility based on the dependency tree tNL.(通过基于依赖树 tNL 检查它们的兼容性,连接 RDF 片段以计算图 G 的合理子图。)
- The results are ranked according to the score of semantic similarity and coherence, leading to the target SPARQL.(结果根据语义相似性和连贯性的分数进行排名,从而得出目标 SPARQL。)
如何做实验
The system is implemented on DBpedia dataset.(该系统是在 DBpedia 数据集上实现的。)