A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (<105) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line Yes
if N is a reversible prime with radix D, or No
if not.
Sample Input:
73 10 23 2 23 10 -2
Sample Output:
Yes Yes No
Submit:
#include <iostream> #include <cmath> using namespace std; bool isPrime(int n){//判断是否是质数 if (n <=1) return false; for (int i=2,j = (int)sqrt(n);i<=j;i++) { if (n%i == 0) return false; } return true; } //目标:质数对应进制的数字反转之后也是质数则输出yes int main() { int n,d; while(scanf("%d", &n) != EOF){ if (n < 0) break;//负数终止输入 scanf("%d",&d); if(isPrime(n) == false){//n是质数进行转换进制 printf("No\n"); continue; } int a[100], len = 0; do{ a[len++] = n % d;//进制转换 n /= d; }while (n != 0); for(int i = 0; i < len; i++) n = n * d + a[i]; printf(isPrime(n) ? "Yes\n" : "No\n"); } return 0; }