题意:
给定n, m, k
下面n个整数 a[n]
下面m个整数 b[n]
用数字[0,k]构造一个n*m的矩阵
若有唯一解则输出这个矩阵,若有多解输出Not Unique,若无解输出Impossible
思路:网络流,,,
n行当成n个点,m列当成m个点
从行-列连一条流量为k的边,然后源点-行连一条a[i]的边, 列-汇点 流量为b[i]
瞎了,该退役了 T^T
#include<stdio.h> #include<string.h> #include<iostream> #include<math.h> #include<algorithm> #include<queue> #include<vector> using namespace std; #define ll int #define N 1005 #define M 200000 #define inf 107374182 #define inf64 1152921504606846976 struct Edge{ ll from, to, cap, nex; }edge[M*2];//注意这个一定要够大 不然会re 还有反向弧 ll head[N], edgenum; void add(ll u, ll v, ll cap, ll rw = 0){ //如果是有向边则:add(u,v,cap); 如果是无向边则:add(u,v,cap,cap); Edge E = { u, v, cap, head[u]}; edge[ edgenum ] = E; head[u] = edgenum ++; Edge E2= { v, u, rw, head[v]}; edge[ edgenum ] = E2; head[v] = edgenum ++; } ll sign[N]; bool BFS(ll from, ll to){ memset(sign, -1, sizeof(sign)); sign[from] = 0; queue<ll>q; q.push(from); while( !q.empty() ){ ll u = q.front(); q.pop(); for(ll i = head[u]; i!=-1; i = edge[i].nex) { ll v = edge[i].to; if(sign[v]==-1 && edge[i].cap) { sign[v] = sign[u] + 1, q.push(v); if(sign[to] != -1)return true; } } } return false; } ll Stack[N], top, cur[N]; ll Dinic(ll from, ll to){ ll ans = 0; while( BFS(from, to) ) { memcpy(cur, head, sizeof(head)); ll u = from; top = 0; while(1) { if(u == to) { ll flow = inf, loc;//loc 表示 Stack 中 cap 最小的边 for(ll i = 0; i < top; i++) if(flow > edge[ Stack[i] ].cap) { flow = edge[Stack[i]].cap; loc = i; } for(ll i = 0; i < top; i++) { edge[ Stack[i] ].cap -= flow; edge[Stack[i]^1].cap += flow; } ans += flow; top = loc; u = edge[Stack[top]].from; } for(ll i = cur[u]; i!=-1; cur[u] = i = edge[i].nex)//cur[u] 表示u所在能增广的边的下标 if(edge[i].cap && (sign[u] + 1 == sign[ edge[i].to ]))break; if(cur[u] != -1) { Stack[top++] = cur[u]; u = edge[ cur[u] ].to; } else { if( top == 0 )break; sign[u] = -1; u = edge[ Stack[--top] ].from; } } } return ans; } void init(){memset(head,-1,sizeof head);edgenum = 0;} int n, m, k; int a[500], b[500], suma, sumb; int mp[505][505], dou[505][505]; //dou[0][i] i这列存在一个可增的点 int hehe(){ if(suma != sumb)return -1; init(); int from = 0, to = n+m + 10; for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) add(i, n+j, k); for(int i = 1; i <= n; i++) add(from, i, a[i]); for(int i = 1; i <= m; i++) add(n+i, to, b[i]); int flow = Dinic(from, to); if(flow != suma) return -1; int tt = 1; for(int i = 1; i <= n; i++)for(int j = 1; j <= m; j++, tt+=2) mp[i][j] = edge[tt].cap; memset(dou, 0, sizeof dou); for(int i = 1; i <= n; i++) { for(int j = 1; j <= m; j++) for(int z = j+1; z <= m; z++) { bool v1=0,v2=0; if(mp[i][j]!=k&&mp[i][z]!=0) { if(dou[z][j])return 0; v1=1; } if(mp[i][j]!=0&&mp[i][z]!=k) { if(dou[j][z])return 0; v2=1; } if(v1)dou[j][z]=1; if(v2)dou[z][j]=1; } } return 1; } void input(){ suma = sumb = 0; for(int i = 1; i <= n; i++)scanf("%d",&a[i]), suma += a[i]; for(int i = 1; i <= m; i++)scanf("%d",&b[i]), sumb += b[i]; } int main(){ int u, v, i, j; while(~scanf("%d %d %d",&n,&m,&k)) { input(); int ans = hehe(); if(ans == -1)puts("Impossible"); else if(ans == 0)puts("Not Unique"); else { puts("Unique"); for(i = 1; i <= n; i++) for(j = 1; j <= m; j++) printf("%d%c",mp[i][j],j==m?'\n':' '); } } return 0; } /* 2 3 8 13 16 3 11 15 2 4 8 15 16 3 11 15 2 3 4 8 15 16 10 4 12 18 6 3 4 8 15 16 10 4 13 18 6 3 5 8 16 16 11 4 13 18 6 2 3 4 1 1 3 4 3 2 1 2 */