Android Serializable与Parcelable原理与区别


一、序列化、反序列化是什么?

(1) 名词解释

对象的序列化 : 把Java对象转换为字节序列并存储至一个储存媒介的过程。
对象的反序列化:把字节序列恢复为Java对象的过程。

(2) 序列化详细解释

对象的序列化涉及三个点关键点:Java对象、字节序列、存储。

1. Java对象的组成?
Java对象包含变量与方法。但是序列与反序列化仅处理Java变量而不处理方法,序列与反序列化仅对数据进行处理。

2. 什么是字符序列?
字符序列是两个词,字符是在计算机和电信领域中,字符(Character)是一个信息单位。数学上,序列是被排成一列的对象(或事件)。
《字符-*》 , 《序列-*》 说白了就是连续排列的多个字符的集合。类似于"1A165613246546"

3. 存储
字符序列需要保存到一个地方,可以是硬盘也可以是内存。
简单说法是:序列化把当前对象信息保存下来。反序列化刚好相反的操作。


二、Java对象与Java对象序列化的区别?

Java对象存在的前提必须在JVM运行期间存在,如果想在JVM非运行的情况下或者在其他机器JVM上获取指定Java对象,在现有Java对象的机制下都不可能完成。
与Java对象不同的是,如果对Java对象执行序列化操作,因为原理是把Java对象信息保存到存储媒介,所以可以在以上Java对象不可能存在的两种情况下依然可以使用Java对象。


三、为什么要使用序列化、反序列化?

根据以上对序列化、反序列化的理解,这个疑问可以翻译成,为什么需要把对象信息保存到存储媒介中并之后读取出来?
因为二中的解释,开发中有在JVM非运行的情况下或者在其他机器JVM上获取指定Java对象的需求。


四、Android 中Serializable与Parcelable区别?

两种都是用于支持序列化、反序列化话操作,两者最大的区别在于存储媒介的不同,Serializable使用IO读写存储在硬盘上,而Parcelable是直接在内存中读写,很明显内存的读写速度通常大于IO读写,所以在Android中通常优先选择Parcelable。
Serializable不是当前关注的焦点,不过可以查看《Java序列化算法透析》这篇文章中实现一个简单的Serializable例子,查看序列化生成的IO文件,并且以16进制读取并一一解释每一个16进制数字的含义。


五、Parcelable举例

在Android中实现Parcelable接口的类可以支持序列与反序列化,以下是一个实现的举例:
1. 实现Parcelable接口
2. 添加实体属性
3. 覆写writeToParcel(Parcel dest, int flags)方法,指定写入Parcel类的数据。
4. 创建Parcelable.Creator静态对象,有两个方法createFromParcel(Parcel in)与newArray(int size),前者指定如何从Parcel中读取出数据对象,后者创建一个数组。
5. 覆写describeContents方法,默认返回0。
public class Gril implements Parcelable {

     private int mAge; // 年龄
     private boolean mSexy; // 是否性感
    
     @Override
     public void writeToParcel(Parcel dest, int flags) {
          dest.writeInt(mAge);
          dest.writeByte((byte) (mSexy ? 1 : 0));
     }
    
     public static final Parcelable.Creator<Gril> CREATOR = new Parcelable.Creator<Gril>() {
          public Gril createFromParcel(Parcel in) {
               Gril gril = new Gril();
               gril.mAge = in.readInt();
               gril.mSexy = in.readByte() != 0;
              return gril;
          }
         
          public Gril[] newArray(int size) {
              return new Gril[size];
          }
     };
    
     @Override
     public int describeContents() {
          return 0;
     }
}


六、Parcelable原理

    从上面的例子中可以看出,具体的写入(dest.writeInt(mAge);)与读取(gril.mAge = in.readInt();)都是针对Parcel对象进行的操作,下面贴出的是Parcle 读写int类型数据的定义。

public final class Parcel {

    ......
    
    /**
     * Write an integer value into the parcel at the current dataPosition(),
     * growing dataCapacity() if needed.
     */
    public final native void writeInt(int val);

    /**
     * Read an integer value from the parcel at the current dataPosition().
     */
    public final native int readInt();
    
     ......
}


从上面代码可以看出都是native方法说明都是使用JNI,其具体位置在system/frameworks/base/core/jni/android_util_Binder.cpp ,以下也仅以int类型读写为例

static void android_os_Parcel_writeInt(JNIEnv* env, jobject clazz, jint val)
{
    Parcel* parcel = parcelForJavaObject(env, clazz);
    if (parcel != NULL) {
        const status_t err = parcel->writeInt32(val);
        if (err != NO_ERROR) {
            jniThrowException(env, "java/lang/OutOfMemoryError", NULL);
        }
    }
}

static jint android_os_Parcel_readInt(JNIEnv* env, jobject clazz)
{
    Parcel* parcel = parcelForJavaObject(env, clazz);
    if (parcel != NULL) {
        return parcel->readInt32();
    }
    return 0;
}


从上面可以看出都会调用Parcel实现且分别调用writeInt32与readInt32函数,接着来看看具体实现。位置:/system/frameworks/base/libs/binder/Parcel.cpp

status_t Parcel::writeInt32(int32_t val)
{
    return writeAligned(val);
}

template<class T>
status_t Parcel::writeAligned(T val) {
    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE(sizeof(T)) == sizeof(T));

    if ((mDataPos+sizeof(val)) <= mDataCapacity) {
restart_write:
        *reinterpret_cast<T*>(mData+mDataPos) = val;
        return finishWrite(sizeof(val));
    }

    status_t err = growData(sizeof(val));
    if (err == NO_ERROR) goto restart_write;
    return err;
}


status_t Parcel::readInt32(int32_t *pArg) const
{
    return readAligned(pArg);
}

template<class T>
status_t Parcel::readAligned(T *pArg) const {
    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE(sizeof(T)) == sizeof(T));

    if ((mDataPos+sizeof(T)) <= mDataSize) {
        const void* data = mData+mDataPos;
        mDataPos += sizeof(T);
        *pArg =  *reinterpret_cast<const T*>(data);
        return NO_ERROR;
    } else {
        return NOT_ENOUGH_DATA;
    }
}

以下4点摘自《探索Android中的Parcel机制(上)》
有兴趣的朋友可以自己读一下,不难理解,这里把基本的思路总结一下:
1. 整个读写全是在内存中进行,主要是通过malloc()、realloc()、memcpy()等内存操作进行,所以效率比JAVA序列化中使用外部存储器会高很多;
2. 读写时是4字节对齐的,可以看到#define PAD_SIZE(s) (((s)+3)&~3)这句宏定义就是在做这件事情;
3. 如果预分配的空间不够时newSize = ((mDataSize+len)*3)/2;会一次多分配50%;

4. 对于普通数据,使用的是mData内存地址,对于IBinder类型的数据以及FileDescriptor使用的是mObjects内存地址。后者是通过flatten_binder()和unflatten_binder()实现的,目的是反序列化时读出的对象就是原对象而不用重新new一个新对象。


七、序列化反序列化Parcelable实验?

1. 任何实体类都需要复写Parcelable接口吗?
2. 如果子类新增属性,需要复写父类writeToParcel与CREATOR吗?
3. writeToParcel 与 createFromParcel 对变量的读写前后顺序可以不一致吗,会出现什么结果?
4. 读写Parcelable对象(写操作dest.writeParcelable(obj, flags);  读操作in.readParcelable(ObjectA.class.getClassLoader()); )
5. 读写Parcelable对象数组
dest.writeParcelableArray(mClassNameList.toArray(new ClassName[mClassNameList.size()]), flags);

Parcelable[] parcelableArr = in.readParcelableArray(ClassName.class.getClassLoader());
ArrayList<ClassName> arrayList = new ArrayList<ClassName>();
for (Parcelable object : parcelableArr) {
     arrayList.add((ClassName)object);
}


八、自己实现序列与反序列化机制

《C 语言的数据序列化 (C语言实现序列化机制的思路)》



九、参考资料

《探索Android中的Parcel机制(上)》
《探索Android中的Parcel机制(下)》

《Android中的Parcel是什么》
《Android开发:什么是Parcel(2)》


 << 返回  Java 学习文章 - 索引


Android Serializable与Parcelable原理与区别,布布扣,bubuko.com

Android Serializable与Parcelable原理与区别

上一篇:以快板之名说Android 应用程序电源管理


下一篇:Android 之事件处理(二)基于监听的事件处理