摘要
数据可视化概念框架
当代,网络和社交媒体的兴起,产生了大量数据,而且数据量的增长已超乎想象。这种现象是怎么发生的?又是何时发生的?
十年前,一种处理问题的新方法演变为:跨企业的从数据源收集、整合大量数据,并进行运算的研究工作。他们这样做的目标是用海量数据改善决策过程。在此期间,促使Amazon、Yahoo和Google这样的公司在处理大量数据方面取得了显著进展。这些里程碑式的成就促使一些大数据分析技术的诞生。当然,我们不会追究大数据的细节问题,但是我们将尝试探索,为什么很多机构改变了他们以往的模式,用类似的想法获得更好的决策。
到底如何用这些海量数据做出更好的决策?这是我们的终极目标,但首先让我们理解数据、信息和知识间的差异,以及它们与数据可视化之间的关系。或许会有这样一个疑问,为什么要讨论数据、信息和知识。我们将就下面的脉络具体展开:怎样开始、用什么开始、这些内容如何有益于问题解决,以及可视化的作用。我们将通过简要回顾涉及的程序步骤,确定数据可视化所需的概念框架。
本章将包括以下主题:
数据、信息、知识和观点之间的差异
信息转化为知识,进而转化为观点
收集、处理和组织数据
数据可视化的历史
数据可视化如何帮助决策
可视化图像
1.1 数据、信息、知识和观点
数据、信息和知识被广泛用于计算机科学领域。通常,这些术语有很多种充满争议且不相一致的定义。在深入研究这些定义之前,我们先理解这些术语与可视化之间的关系。数据可视化的主要目标是从数据或信息中得出观点(隐含的真理)。本书有关数据、知识和观点的整个讨论属于计算机科学的范畴,而非心理学或认知科学。认知科学方面的文献请参见:https://www.ucsf.edu/news/2014/05/114321/converting-data-knowledge-insight-and-action。
1.1.1 数据
数据是得出结论的前提。尽管在一些特定的背景下,数据和信息看起来相关联。但实际上,数据是离散、客观事实的数字表示。作为后续工作的基础,数据会有不同的组织和安排形式,以方便得到回答实际问题的有用信息。
数据可以是非常简单却庞大冗杂的。离散数据本身不能用于决策。这是因为它没有意义,而且更重要的是,它们之间没有结构或关系。数据收集、转换和储存的过程因数据类型和储存方法的不同而有很多变化。数据有很多形式,一些常见形式如下:
CSV文件
数据库表格
文件格式(Excel、PDF、Word等)
HTML文件
JSON文件
文本文件
XML文件
1.1.2 信息
信息是处理后的数据,为实际问题提供答案。当我们增加一种关系或一个关联时,数据就成为信息。这种关联通过提供数据背景来完成。这个背景有助于我们回答数据相关的问题。
比如,我们假定一名篮球员的数据包含身高、体重、位置、大学、出生日期、应招入队,选拔轮数,NBA-登场和新成员排名。问题“哪位球员是首位应征入队、身高在6英尺以上且担任控球后卫?”的回答是一条信息。
类似地,每个球员的得分也是一条数据。问题“今年每次比赛得分最高的选手是谁?分数是多少?”的回答“LeBron James,27.47”同样也是一条信息。
1.1.3 知识
当人类解释和组织信息,并用以决策时,知识便应运而生。知识是数据、信息和通过经验获得的技能。知识包括做出适当决策的能力和执行时所需的技能。
作为必不可少的部分(连接数据)允许我们理解每条信息的相对重要性。通过比较过去的结果和识别模式,我们不必从头开始寻找问题的解决方法。下图总结了数据、信息和知识的概念。
知识以不断增长的方式发生变化,特别是当信息被重新安排或被重新组织,或在一些计算算法发生变化时。知识像箭一样直击算法的结果,该算法与来自数据的过去信息有关。在许多情况下,可以通过与结果的视觉交互获得知识。另一方面,观点开启了通向未来的途径。
1.1.4 数据分析和观点
在我们深入研究观点的定义及其如何与实际问题相关联之前,我们不妨先看看如何获取观点。十年间,组织机构已尽力弄懂他们拥有的所有数据和信息,特别是探索数据量的大小。为了基于已有数据信息得到最佳或现实的决策,他们发现了数据分析的重要性(也就是数据分析学或分析学)。
分析学依赖数学算法来确定产生观点的数据间的关系。一种简单的方式是通过打比方来理解观点:当数据没有结构且与实际问题相对应时,通过将数据结构化,使其更接近实际目标,这有助于人们更清晰、更深刻地理解数据。观点是“我发现了”的那个时刻,得到突破性的结果。一个人不应该困惑于术语分析学和商务智能。当商务智能提供基于历史数据的分析结果时,分析学就具备了预测能力。
分析学通常用于更广泛的数据,为此,数据内外之间的协作时常发生。在一些实际问题的范式中,这种协作仅发生在海量数据的内部,但在大多数情况下,加入外界信息有助于链接点或完成拼图。最常见的两个外部数据链接源是社交媒体和用户群体。
在本章,我们应用分析法理论得出观点、驱动商业价值,以及改善决策和更好地理解用户,我们得出真实生活故事中有价值的结论。